
Вопрос задан 24.06.2023 в 11:25.
Предмет Алгебра.
Спрашивает Мартынова Виктория.
Обчислити перший член і різницю арифметичної прогресії,якщо а5+а12=36,а3+а19=6


Ответы на вопрос

Отвечает Галкин Гала.
Ответ:



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Давайте позначимо перший член арифметичної прогресії як "а" і різницю як "d". Тоді ми можемо скласти систему рівнянь за наданими даними:
З першого рівняння: a₅ + a₁₂ = 36 a + 4d + a + 11d = 36 2a + 15d = 36 ............... (1)
З другого рівняння: a₃ + a₁₉ = 6 a + 2d + a + 18d = 6 2a + 20d = 6 ................ (2)
Тепер ми маємо систему двох рівнянь з двома невідомими:
- 2a + 15d = 36
- 2a + 20d = 6
Розглянемо перше рівняння:
2a + 15d = 36
Тепер розглянемо друге рівняння:
2a + 20d = 6
Віднімемо друге рівняння від першого:
(2a + 15d) - (2a + 20d) = 36 - 6
-5d = 30
d = -6
Тепер, підставивши d назад у перше рівняння, ми можемо знайти значення a:
2a + 15*(-6) = 36 2a - 90 = 36 2a = 126 a = 63
Отже, перший член a = 63, а різниця d = -6.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili