Вопрос задан 18.06.2023 в 20:32. Предмет Алгебра. Спрашивает Комарова Мария.

катер проплыл 30 км по течению реки за 1,5 часа и вернулся на туже пристань потратив на обратный

путь 2 часа найдите собственную скорость катера и скорость течения реки Помогите пожалуйста!! алгебра 7 класс без километра не нужной фигни!!​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шмигель Ксюша.

Ответ:

30:1.5=20

20•2=40

відповідь 40 км в час

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a boat traveled 30 km downstream in 1.5 hours and returned to the same dock in 2 hours. We need to find the speed of the boat and the speed of the river's current.

Let's assume the speed of the boat is represented by b and the speed of the river's current is represented by c.

Downstream Journey

During the downstream journey, the boat is moving in the same direction as the river's current. Therefore, the effective speed of the boat will be the sum of its own speed and the speed of the river's current.

The time taken for the downstream journey is given as 1.5 hours, and the distance traveled is 30 km. We can use the formula:

Distance = Speed × Time

Substituting the values, we have:

30 = (b + c) × 1.5

Upstream Journey

During the upstream journey, the boat is moving against the direction of the river's current. Therefore, the effective speed of the boat will be the difference between its own speed and the speed of the river's current.

The time taken for the upstream journey is given as 2 hours, and the distance traveled is also 30 km. We can use the same formula:

Distance = Speed × Time

Substituting the values, we have:

30 = (b - c) × 2

Solving the Equations

We now have a system of two equations with two variables. We can solve this system to find the values of b and c.

Let's solve the equations using the substitution method.

From equation we can express b in terms of c:

b = 30/1.5 - c = 20 - c [[3]]

Substituting this value of b in equation we have:

30 = (20 - c - c) × 2

Simplifying the equation:

30 = (20 - 2c) × 2

30 = 40 - 4c

4c = 40 - 30

4c = 10

c = 10/4

c = 2.5

Now, substituting the value of c back into equation [[3]], we can find b:

b = 20 - 2.5

b = 17.5

Therefore, the speed of the boat is 17.5 km/h and the speed of the river's current is 2.5 km/h.

Answer

The speed of the boat is 17.5 km/h and the speed of the river's current is 2.5 km/h.

Note: The search results provided by You.com did not contain relevant information for this specific problem. The solution was obtained through mathematical calculations.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос