Вопрос задан 16.06.2023 в 15:29. Предмет Алгебра. Спрашивает Бодров Максим.

Разложите на множители (a+b)^3-(a-b)^3

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Майская Евгения.

Ответ:

2b(3a^2 + b^2)

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала раскроем скобки в выражении (a+b)^3 и (a-b)^3:

(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3

Теперь подставим полученные значения в исходное выражение:

(a+b)^3 - (a-b)^3 = (a^3 + 3a^2b + 3ab^2 + b^3) - (a^3 - 3a^2b + 3ab^2 - b^3)

Теперь выразим это выражение в виде разности кубов:

(a^3 + 3a^2b + 3ab^2 + b^3) - (a^3 - 3a^2b + 3ab^2 - b^3) = a^3 + 3a^2b + 3ab^2 + b^3 - a^3 + 3a^2b - 3ab^2 + b^3

Упростим данное выражение:

a^3 + 3a^2b + 3ab^2 + b^3 - a^3 + 3a^2b - 3ab^2 + b^3 = 6a^2b + 2b^3

Таким образом, исходное выражение (a+b)^3 - (a-b)^3 равно 6a^2b + 2b^3.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос