Докажите неравенство b^2+5>10(b-2)
Ответы на вопрос
Ответ:
b²+5>10(b-2)
Решение относительно b
↓
b²+5>10b-20
b²+5-10b+20>0
b²+25-10b>0
b²-10b+25>0
↓
a²-2ab+b²=(a-b)²
(b-5)²>0
↓
(b-5)²=0
b=5
bЄR\{5}
Решенте относительно b путем проверки значений на интервалах
↓
b²+5>10(b-2)
b²-10b+25>0
b=5
↓
b<5
b>5
↓
↓
b<5 является решением
↓
b<5 является решением
b>5 является решением
Окончательным решением неравенства b²+5>10(b-2) являются все действительны числа b, такие b<5 или b>5
b<5 или b>5
Для доказательства неравенства b^2 + 5 > 10(b-2), мы можем разложить его на более простые части и провести алгебраические операции для упрощения.
Данное неравенство можно переписать в виде: b^2 + 5 > 10b - 20.
Затем, мы можем привести подобные члены, переместив все члены на одну сторону неравенства: b^2 - 10b + 5 + 20 > 0.
Далее, мы можем объединить слагаемые: b^2 - 10b + 25 > 0.
Это квадратное уравнение может быть факторизовано в виде (b - 5)^2 > 0.
Теперь мы можем заметить, что квадрат любого числа всегда положителен или равен нулю, и только в случае равенства неравенство будет выполняться.
Таким образом, (b - 5)^2 > 0 для любого значения b, отличного от 5.
Таким образом, неравенство b^2 + 5 > 10(b-2) выполняется для всех значений b, кроме b = 5.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
