Вопрос задан 14.12.2023 в 15:42. Предмет Геометрия. Спрашивает Olgerd Olgerd.

Рощвяжіть систему нерівностей Дають сто балів 2 - 5x < 7 ,\\ 3x+1<-8

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving the System of Inequalities

To solve the system of inequalities, we will solve each inequality separately and then find the values of x that satisfy both inequalities.

The given system of inequalities is:

1. 2 - 5x < 7 2. 3x + 1 < -8

Let's solve each inequality step by step.

Solving the First Inequality

The first inequality is 2 - 5x < 7. To solve it, we will isolate x on one side of the inequality.

1. Subtract 2 from both sides of the inequality: 2 - 2 - 5x < 7 - 2 -5x < 5

2. Divide both sides of the inequality by -5. Since we are dividing by a negative number, the inequality sign will flip: (-5x) / -5 > 5 / -5 x > -1

So, the solution to the first inequality is x > -1.

Solving the Second Inequality

The second inequality is 3x + 1 < -8. Again, we will isolate x on one side of the inequality.

1. Subtract 1 from both sides of the inequality: 3x + 1 - 1 < -8 - 1 3x < -9

2. Divide both sides of the inequality by 3: (3x) / 3 < (-9) / 3 x < -3

So, the solution to the second inequality is x < -3.

Finding the Intersection of Solutions

To find the values of x that satisfy both inequalities, we need to find the intersection of the solution sets.

From the first inequality, we have x > -1, and from the second inequality, we have x < -3.

The values of x that satisfy both inequalities are the values that are greater than -1 and less than -3. However, there is no overlap between these two solution sets. Therefore, there are no values of x that satisfy both inequalities simultaneously.

In conclusion, the given system of inequalities does not have a solution.

Please let me know if you need any further clarification or assistance!

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос