Вопрос задан 01.12.2023 в 08:21. Предмет Алгебра. Спрашивает Жданович Никита.

1/1*4 + 1/4*7 +...+ 1/n*(n+3) < 1/3докажите неравенство​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Грабарь Михаил.

Ответ:

Объяснение:

какое условие такой и ответ
1/(1*4) = (1/1 - 1/4)*1/3

1/(4*7) = (1/4 - 1/7)*1/3
1/(7*10) = (1/7 - 1/10)*1/3
......

1/((3k-2)*(3k+1)) = (1/(3k-2) - 1/(3k+1))*1/3

1/((3k+1)*(3k+4)) = (1/(3k+1) - 1/(3k+4))*1/3
****************************************************
1/1*4 + 1/4*7 +...+  1/((3k-2)*(3k+1)) + 1/((3k+1)*(3k+4)) =
(1/1 - 1/4)*1/3 + (1/4 - 1/7)*1/3 +  (1/7 - 1/10)*1/3 + .... +  (1/(3k-2) - 1/(3k+1))*1/3 +(1/(3k+1) - 1/(3k+4))*1/3 =
=  (1/1 )*1/3 - 1/(3k+4)*1/3 =  1/3 - 1/(3k+4)*1/3  < 1/3 - доказано
*************************************************
если следовать точной обозначениям из задания  при условии что n принимает только определенные значения (n=3k+1)  то
1/1*4 + 1/4*7 +...+ 1/n*(n+3) = 1/3 - 1/(3*(n+3)) <  1/3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для доказательства неравенства 1/1*4 + 1/4*7 + ... + 1/n*(n+3) < 1/3, воспользуемся методом математической индукции.

1. База индукции: Проверим неравенство для n = 1: 1/1*4 = 1/4 < 1/3, что верно.

2. Предположение индукции: Пусть неравенство верно для некоторого n = k, т.е. 1/1*4 + 1/4*7 + ... +

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос