Вопрос задан 13.11.2023 в 11:23. Предмет Алгебра. Спрашивает Завьялов Олег.

50 баллов! Из двух городов A и B, расстояние между которыми равно 80 км, одновременно выехали две

автомашины. Скорость первой машины равна 84 км/ч, а скорость второй машины — 44 км/ч. На каком расстоянии от города B обе машины встретятся и через какое время? Ответ: обе машины встретятся на расстоянии ? км от города B, и это случится через ? часа.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ковалев Олексій.

Ответ: через 2 часа первая машина догонит 2-ую;

на расстоянии 164 км от города В.

Объяснение:

1) 82 - 42 = 40(км/ч) - скорость сближения

2) 80 : 40 = 2 (часа)

3) 82 * 2 = 164(км)

0 0
Отвечает Бахарев Дима.

Ответ:

Объяснение:

При движении навстречу находим скорость сближения, которая равна сумме скоростей автомобилей.

V сближения = 84+44 = 128 км/час.

Теперь по формуле пути

S=vt;  80=128t;

128t=80;

t=80/128;

t=5/8=0.625 часа.

t=0,625*60=37,5 минуты.

Из города В ехала машина со скоростью 44  км/час. За время 37..5  минут она проехала 27,5 км.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этой задачи используем формулу:

\[ \text{Время} = \frac{\text{Расстояние}}{\text{Суммарная скорость}} \]

1. Найдем суммарную скорость двух машин:

\[ \text{Суммарная скорость} = \text{Скорость первой машины} + \text{Скорость второй машины} \]

\[ \text{Суммарная скорость} = 84 \, \text{км/ч} + 44 \, \text{км/ч} \]

\[ \text{Суммарная скорость} = 128 \, \text{км/ч} \]

2. Теперь используем формулу времени для одновременного движения:

\[ \text{Время} = \frac{\text{Расстояние}}{\text{Суммарная скорость}} \]

\[ \text{Время} = \frac{80 \, \text{км}}{128 \, \text{км/ч}} \]

\[ \text{Время} \approx 0,625 \, \text{ч} \]

3. Теперь найдем расстояние, которое пройдет первая машина за это время:

\[ \text{Расстояние} = \text{Скорость первой машины} \times \text{Время} \]

\[ \text{Расстояние} = 84 \, \text{км/ч} \times 0,625 \, \text{ч} \]

\[ \text{Расстояние} \approx 52,5 \, \text{км} \]

Таким образом, обе машины встретятся на расстоянии примерно \(52,5 \, \text{км}\) от города B, и это произойдет через примерно \(0,625 \, \text{ч}\) (или \(37,5\) минут).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос