Вопрос задан 07.11.2023 в 09:28. Предмет Алгебра. Спрашивает Алексеева Кристина.

Делится ли число 11 · 21 · 31 · . . . · 91 − 1 на 5? (Ответ обоснуйте.)​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федосова Катя.

11 \cdot  21 \cdot 31 \cdot \ldots\cdot 91 - 1

Рассмотрим число 11 \cdot  21 \cdot 31 \cdot \ldots\cdot 91. Так как каждый множитель в произведении оканчивается на 1, то и все произведение оканчивается на 1.

Таким образом:

11 \cdot  21 \cdot 31 \cdot \ldots\cdot 91 - 1=\ldots1 - 1

Но когда мы от числа, оканчивающегося на 1, отнимем 1, то получим число оканчивающееся на 0:

11 \cdot  21 \cdot 31 \cdot \ldots\cdot 91 - 1=\ldots1 - 1=\ldots0

В соответствии с признаком делимости на 5, если число оканчивается на 0 или на 5, то оно делится на 5. Значит, рассматриваемое число делится на 5.

Ответ: да, делится

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для определения, делится ли число \(11 \cdot 21 \cdot 31 \cdot \ldots \cdot 91 - 1\) на 5, мы можем воспользоваться правилом делимости на 5.

Правило делимости на 5 гласит, что число делится на 5, если его последняя цифра является 0 или 5. Другими словами, для того чтобы узнать, делится ли число на 5, нам нужно проверить его последнюю цифру.

Давайте рассмотрим число \(11 \cdot 21 \cdot 31 \cdot \ldots \cdot 91 - 1\). Мы знаем, что каждый множитель в этом выражении равен произведению некоторого числа на 10 плюс какое-то однозначное число (например, \(11 = 1 \cdot 10 + 1\), \(21 = 2 \cdot 10 + 1\), и так далее). Поскольку каждый множитель содержит 10, последняя цифра каждого из них будет 0. Следовательно, произведение всех этих множителей также будет оканчиваться на 0.

Теперь давайте рассмотрим выражение \(11 \cdot 21 \cdot 31 \cdot \ldots \cdot 91 - 1\). Поскольку оно оканчивается на 0 (как было объяснено выше), вычитание 1 из этого числа не изменит последней цифры, и она по-прежнему будет равна 0.

Таким образом, число \(11 \cdot 21 \cdot 31 \cdot \ldots \cdot 91 - 1\) делится на 5, так как его последняя цифра (0) является делителем 5.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос