
Вопрос задан 29.10.2023 в 04:09.
Предмет Алгебра.
Спрашивает Васильев Даниил.
Расстояние между двумя пристанями равно 123,2 км. Из них одновременно навстречу друг другу вышли
две лодки, скорости которых в стоячей воде равны. Через 2,8 ч. лодки встретились. Скорость течения реки равна 3 км/ч. Скорость лодки в стоячей воде равна км/ч. Сколько километров до места встречи пройдёт лодка, плывущая по течению? км. Сколько километров до места встречи пройдёт лодка, плывущая против течения? км.

Ответы на вопрос

Отвечает Долгова Лена.
собственная скорость это и есть скорость в стоячей воде




Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
#### Problem Analysis
We are given that the distance between two piers is 123.2 km. Two boats start simultaneously from each pier and meet after 2.8 hours. The speed of the river current is 3 km/h, and the speed of the boats in still water is unknown. We need to find the distance traveled by the boat moving with the current and against the current.
#### Solution
Let's assume the speed of the boats in still water is **x** km/h.
To find the distance traveled by the boat moving with the current, we can use the formula: **distance = speed × time**. The boat moving with the current will have a combined speed of **(x + 3)** km/h. The time taken is 2.8 hours. Therefore, the distance traveled by the boat moving with the current is **(x + 3) × 2.8** km.
To find the distance traveled by the boat moving against the current, we can use the same formula. The boat moving against the current will have a combined speed of **(x - 3)** km/h. The time taken is 2.8 hours. Therefore, the distance traveled by the boat moving against the current is **(x - 3) × 2.8** km.
Let's calculate the distances.
#### Calculation
The distance traveled by the boat moving with the current is **(x + 3) × 2.8** km.
The distance traveled by the boat moving against the current is **(x - 3) × 2.8** km.
#### Substituting Values
Substituting the given values, we have:
- Distance between the piers = 123.2 km
- Time taken = 2.8 hours
- Speed of the river current = 3 km/h
We need to find:
- Distance traveled by the boat moving with the current
- Distance traveled by the boat moving against the current
#### Calculation
The distance traveled by the boat moving with the current is **(x + 3) × 2.8** km.
The distance traveled by the boat moving against the current is **(x - 3) × 2.8** km.
#### Answer
The distance traveled by the boat moving with the current is **(x + 3) × 2.8** km.
The distance traveled by the boat moving against the current is **(x - 3) × 2.8** km.
Please provide the value of **x** (the speed of the boats in still water) to calculate the distances.
0
0


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili