Верно ли,что при любом целом m значение выражения (3m-8)(7+3m)-(3m-5)(3m+4) кратно 12?
Ответы на вопрос
Значит, число 12 кратно числу -36, следовательно, 12 кратно исходному выражению.
Ответ: верно
Для определения, кратно ли выражение (3m-8)(7+3m)-(3m-5)(3m+4) числу 12, мы можем провести упрощение этого выражения и затем проверить, делится ли оно на 12 без остатка.
(3m-8)(7+3m)-(3m-5)(3m+4)
Сначала упростим оба члена выражения:
Раскроем скобки: (3m-8)(7) + (3m-8)(3m) - (3m-5)(3m) - (3m-5)(4)
Подсчитаем произведения: 21m - 56 + 9m^2 - 24m - 9m^2 + 15m - 12m + 20
Упростим выражение, объединяя подобные члены: (21m - 12m - 24m) + (-56 + 15 + 20)
Продолжим упрощение: (-15m) + (-56 + 15 + 20)
Еще одно упрощение: -15m - 21
Теперь у нас есть упрощенное выражение: -15m - 21. Мы видим, что это выражение не кратно 12 ни при каких целых значениях m, так как оно содержит член -21, который не делится на 12 без остатка. Таким образом, при любом целом значении m, данное выражение не кратно 12.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
