Решить уравнение:(7x+3y-29)^2+(7x+10y-15)^2=0 помогите пж
Ответы на вопрос
Ответ: возможно так
Объяснение:

Уравнение, которое вы предложили, выглядит как квадрат суммы двух квадратов:
(7x + 3y - 29)^2 + (7x + 10y - 15)^2 = 0
Для решения этого уравнения, нужно найти такие значения переменных x и y, которые делают его равным нулю. Однако это уравнение не имеет решений в действительных числах. Причина в том, что сумма квадратов всегда больше или равна нулю, и она равна нулю только в случае, если каждый из квадратов равен нулю. То есть:
(7x + 3y - 29)^2 = 0 (7x + 10y - 15)^2 = 0
Решив каждое из этих уравнений по отдельности, мы получаем:
Для первого уравнения: 7x + 3y - 29 = 0
Для второго уравнения: 7x + 10y - 15 = 0
Однако если мы попробуем решить систему уравнений, то увидим, что она не имеет решений, так как эти два уравнения противоречат друг другу. Таким образом, исходное уравнение не имеет решений в действительных числах.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
