Вопрос задан 23.10.2023 в 20:49. Предмет Алгебра. Спрашивает Кяро Анна.

Найдите трёхзначное натуральное число, которое при делении га 3, на 4 и на 5 даёт в остатке 1 и

цифры которого идут в порядке убывания. В ответе укажите какой-нибудь одно такое число
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ищук Виктория.

Если вычесть из искомого числа 1,то оно будет делиться на 3,4,5 одновременно.Тогда перемножим 3*4*5=60и прибавив 1.получим 61-число не трехзначное.Тогда 60*2+1=121,но цифры не убывают.Дальше:60*3=180;60*4=240;60*5=300;60*6=360;60*7=420+1=421

Ответ:421

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте рассмотрим условие:

  1. Число должно быть трехзначным.
  2. При делении на 3, 4 и 5 остаток должен быть равен 1.
  3. Цифры числа должны идти в порядке убывания.

Давайте начнем с 3. Узнайте, какие трехзначные числа удовлетворяют условию деления на 3 с остатком 1. Мы можем начать с 100 и идти вверх по тройкам:

100 % 3 = 1 101 % 3 = 2 102 % 3 = 0 103 % 3 = 1 104 % 3 = 2 ...

Похоже, 103 удовлетворяет первому условию.

Теперь перейдем ко второму условию, делению на 4 с остатком 1. Давайте проверим, удовлетворяет ли 103 этому условию:

103 % 4 = 3 104 % 4 = 0 105 % 4 = 1

Третье условие также выполнено для числа 103.

Наконец, давайте проверим, удовлетворяет ли число 103 условию деления на 5 с остатком 1:

103 % 5 = 3 104 % 5 = 4 105 % 5 = 0

Третье условие не выполняется для числа 103.

Из этого следует, что не существует трехзначного числа, которое удовлетворяло бы всем трем условиям одновременно.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос