Вопрос задан 05.10.2023 в 00:47. Предмет Алгебра. Спрашивает Дрюпина Лиза.

При каком значении k верно равенство:(2^10)^k=2^20?​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Иванова Настя.

Ответ:при k = 2

Объяснение:

2*10=20

2*20=40

следовательно к=2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения этого уравнения, нужно применить свойство степеней с одинаковым основанием, которое гласит: (am)n=am×n(a^m)^n = a^{m \times n}.

В данном случае, у нас есть уравнение (210)k=220(2^{10})^k = 2^{20}. Сравнивая степени, мы видим, что 10k=2010k = 20. Теперь нужно решить это уравнение относительно kk:

10k=2010k = 20 k=2010k = \frac{20}{10} k=2k = 2

Итак, при k=2k = 2 верно равенство (210)2=220(2^{10})^2 = 2^{20}.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос