Вопрос задан 18.02.2019 в 17:41. Предмет Алгебра. Спрашивает Лосева Кристина.

При каком значении переменной А, значение выражения 11А-9 равно значению выражения 5А+3 ?При каком

значении переменной А, значение выражения 9А+21 равно значению выражения 15-3А ?При каком значении переменной А, значение выражения 7А+13 противоположно значению выражения 12-2А ?При каком значении переменной А, значение выражения 9А-5 на 11 меньше значения выражения 2А+34 ?При каком значении переменной А, значение выражения 3А-8 на 8 больше значения выражения 14-7А ?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Тимофеев Никита.
11а-9=5а+3
11а-5а=3+9
6а=12
А=2

9а+21=15-3а
9а+3а=15-21
12а=-6
А=-0,5


7а+13=-12+2а
7а-2а=-12-13
5а=-25
А= -5


2а+34-(9а-5)=11
2а-9а=11-34-5
-7а=-28
А=4

3а-8-(14-7а)=8
3а+7а=8+8+14
10а=30
А=3

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Вопрос: Ответь подробно. При каком значении переменной А, значение выражения 11А-9 равно значению выражения 5А+3? При каком значении переменной А, значение выражения 9А+21 равно значению выражения 15-3А? При каком значении переменной А, значение выражения 7А+13 противоположно значению выражения 12-2А? При каком значении переменной А, значение выражения 9А-5 на 11 меньше значения выражения 2А+34? При каком значении переменной А, значение выражения 3А-8 на 8 больше значения выражения 14-7А?

Ответ: Давайте решим каждое выражение по очереди.

1. При каком значении переменной A, значение выражения 11A-9 равно значению выражения 5A+3?

Для этого выражения мы должны приравнять оба выражения и решить уравнение:

11A - 9 = 5A + 3

Сначала вычтем 5A из обеих сторон:

11A - 5A - 9 = 5A - 5A + 3

6A - 9 = 3

Затем добавим 9 к обеим сторонам:

6A - 9 + 9 = 3 + 9

6A = 12

Наконец, разделим обе стороны на 6, чтобы найти значение переменной A:

6A / 6 = 12 / 6

A = 2

Таким образом, значение переменной A равно 2.

2. При каком значении переменной A, значение выражения 9A+21 равно значению выражения 15-3A?

Аналогично, мы приравниваем оба выражения и решаем уравнение:

9A + 21 = 15 - 3A

Сначала добавим 3A к обеим сторонам:

9A + 3A + 21 = 15 - 3A + 3A

12A + 21 = 15

Затем вычтем 21 из обеих сторон:

12A + 21 - 21 = 15 - 21

12A = -6

Наконец, разделим обе стороны на 12:

12A / 12 = -6 / 12

A = -0.5

Таким образом, значение переменной A равно -0.5.

3. При каком значении переменной A, значение выражения 7A+13 противоположно значению выражения 12-2A?

Снова приравняем оба выражения и решим уравнение:

7A + 13 = -(12 - 2A)

Сначала раскроем скобки:

7A + 13 = -12 + 2A

Затем вычтем 2A и вычтем 13 из обеих сторон:

7A - 2A + 13 - 13 = -12 + 2A - 2A

5A = -12

Наконец, разделим обе стороны на 5:

5A / 5 = -12 / 5

A = -2.4

Таким образом, значение переменной A равно -2.4.

4. При каком значении переменной A, значение выражения 9A-5 на 11 меньше значения выражения 2A+34?

Приравняем оба выражения и решим уравнение:

9A - 5 = 2A + 34 - 11

Сначала объединим подобные члены:

9A - 5 = 2A + 23

Затем вычтем 2A и вычтем 23 из обеих сторон:

9A - 2A - 5 - 23 = 2A - 2A + 23 - 23

7A - 28 = 0

Наконец, добавим 28 к обеим сторонам:

7A - 28 + 28 = 0 + 28

7A = 28

A = 4

Таким образом, значение переменной A равно 4.

5. При каком значении переменной A, значение выражения 3A-8 на 8 больше значения выражения 14-7A?

Приравняем оба выражения и решим уравнение:

3A - 8 = 14 - 7A + 8

Сначала объединим подобные члены:

3A - 8 = 22 - 7A

Затем добавим 7A и добавим 8 к обеим сторонам:

3A + 7A - 8 + 8 = 22 - 7A + 7A + 8

10A = 30

A = 3

Таким образом, значение переменной A равно 3.

Итак, мы решили все пять уравнений и получили значения переменной A для каждого случая:

A = 2, A = -0.5, A = -2.4, A = 4, A = 3.

0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос