
Срочно!!!! 3. Основа рівнобедреного трикутника дорівнює 8/2 см, а біч- 12 см. Знайдіть медіану
трикутника, прове- на сторона дену до його бічної сторони.

Ответы на вопрос

Объяснение:
∆АВС ,АВ=ВС=12 см
АС=8√2 см
найти : медиану АК
В треугольнике медианы пересекаются в одной точке и точкой пересечения делятся в соотношении 2: 1 от вершины.
В равнобедренном треугольнике медиана
ВН является высотой.
∆АВН -прямоугольный:
АН=СН=АС:2=8√2:2=4√2 см
по теореме Пифагора:
ВН=√(АВ²-АН²)=√((12²-(4√2)²)=√112 см
ОН=1/3×ВН=1/3√112=√112/3 см
АО:ОК=2:1
∆АОН - прямоугольный:
по теореме Пифагора:
АО=√(ОН²+АН²)=√((√112/3)²+(4√2)²)=
=√(112/9+32)=√400/9=20/3 см
20/3:ОК=2:1
ОК=20/3:2=10/3 см
АК=АО+ОК
АК=20/3+10/3=30/3=10 см
ответ: АК=10 см




Медіана рівнобедреного трикутника, проведена до його бічної сторони, ділить бічну сторону навпіл. Оскільки основа рівнобедреного трикутника дорівнює 8/2 см, то основа дорівнює 4 см (8/2 = 4).
Тепер, ми можемо використовувати теорему Піфагора для обчислення медіани. Медіана є гіпотенузою прямокутного трикутника, в якому одна зі сторін є половиною основи, а інша сторона - бічна сторона трикутника.
За теоремою Піфагора:
(медіана)^2 = (половина основи)^2 + (бічна сторона)^2
Давайте підставимо відомі значення:
(медіана)^2 = (4 см)^2 + (12 см)^2 (медіана)^2 = 16 кв. см + 144 кв. см (медіана)^2 = 160 кв. см
Тепер витягнемо квадратний корінь з обох боків:
медіана = √160 кв. см медіана ≈ 12.65 см
Отже, медіана рівнобедреного трикутника, проведена до його бічної сторони, приблизно дорівнює 12.65 см.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili