Вопрос задан 25.09.2023 в 03:54. Предмет Алгебра. Спрашивает Людвикевич Арина.

1) sin x - √(3) cos x=0; 2) 2sin x + cos x =0; 3) sin^2x - 5 sin x cos x+4 cos^2 =0; 4) 3sin^2 -

2√(3) sin x cos x + cos^2x=0.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лошаков Янис.

English Launches:

sin x - √(3) cos x = 0

Divide both sides by cos x (assuming cos x is not equal to 0):

sin x / cos x - √(3) = 0 / cos x

tan x = √(3)

x = π/3 + kπ, where k is an integer

2sin x + cos x = 0

Divide both sides by cos x (assuming cos x is not equal to 0):

2tan x + 1 = 0

tan x = -1/2

x = 7π/6 + kπ, where k is an integer

sin^2x - 5 sin x cos x+4 cos^2x = 0

This equation can be factored as:

(sin x - 4 cos x)(sin x - cos x) = 0

So either sin x - 4 cos x = 0 or sin x - cos x = 0.

If sin x - 4 cos x = 0:

Divide both sides by cos^2x (assuming cos x is not equal to 0):

tan x - 4 = 0

tan x = 4

x = arctan(4) + kπ, where k is an integer

If sin x - cos x = 0:

sin x = cos x

Divide both sides by cos^2x (assuming cos x is not equal to 0):

tan x = 1

x = π/4 + kπ, where k is an integer

3sin^2x - 2√(3) sin x cos x + cos^2x = 0

This equation can be written as:

(sin x - √(3)/2 cos x)^2 + 1/4 cos^2x = 0

Since the square of a real number is always non-negative, the left-hand side of the equation is always greater than or equal to 0. Therefore, there are no real solutions for this equation.

Українська мова:

sin x - √(3) cos x = 0

Ми можемо розкласти ліву частину на добуток sin x та cos x:

sin x - √(3) cos x = 0

sin x / cos x = √(3)

tg x = √(3)

x = π/3 + πk, де k - ціле число.

2sin x + cos x = 0

Можемо поділити обидві частини на √(5) та використати формули для sin та cos кутів суми:

2sin x / √(5) + cos x / √(5) = 0

sin (x+y) = 0, де y = arccos (-2/√(5))

x = πk - y, де k - ціле число.

sin^2x - 5 sin x cos x + 4 cos^2x = 0

Ми можемо переписати це рівняння в такому вигляді:

(sin x - 4cos x)(sin x - cos x) = 0

Тоді ми маємо два випадки:

sin x - 4cos x = 0

tg x = 4

x = arctg 4 + πk, де k - ціле число.

або

sin x - cos x = 0

tg x = 1

x = π/4 + πk, де k - ціле число.

3sin^2x - 2√(3) sin x cos x + cos^2x = 0

Можемо переписати це рівняння таким чином:

(√(3)sin x - cos x)(sin x - √(3)cos x) = 0

Тоді ми маємо два випадки:

√(3)sin x - cos x = 0

tg x = 1/√(3)

x = π/6 + πk, де k - ціле число.

або

sin x - √(3)cos x = 0

tg x = √(3)

x = π/3 + πk, де k - ціле число.

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve each of these trigonometric equations, we can use various trigonometric identities and techniques. Let's solve each equation one by one:

  1. sin(x) - √3 cos(x) = 0:

We can use the trigonometric identity sin(π/3) = √3/2 and cos(π/3) = 1/2 to simplify this equation:

sin(x) - √3 cos(x) = 0 sin(x) - 2(sin(π/3) cos(x) + cos(π/3) sin(x)) = 0 sin(x) - 2(sin(π/3 + x)) = 0 sin(x) = 2sin(π/3 + x)

Now, we need to find the values of x for which sin(x) = 2sin(π/3 + x). We can use the identity sin(a + b) = sin(a)cos(b) + cos(a)sin(b):

sin(x) = 2(sin(π/3)cos(x) + cos(π/3)sin(x)) sin(x) = 2(√3/2 cos(x) + 1/2 sin(x))

Now, we can rewrite sin(x) in terms of cos(x):

sin(x) = √3 cos(x) + sin(x)

Now, move sin(x) to the left side:

√3 cos(x) = 0

To solve for x, divide both sides by √3:

cos(x) = 0

Now, we know that cos(x) = 0 when x is an odd multiple of π/2:

x = π/2 + kπ, where k is an integer.

  1. 2sin(x) + cos(x) = 0:

This equation can be simplified by dividing both sides by cos(x):

2sin(x)/cos(x) + 1 = 0

Now, use the identity tan(x) = sin(x)/cos(x):

2tan(x) + 1 = 0

2tan(x) = -1

tan(x) = -1/2

To find the solutions for x, we can take the arctan of both sides:

x = arctan(-1/2) + kπ, where k is an integer.

  1. sin^2(x) - 5sin(x)cos(x) + 4cos^2(x) = 0:

This equation can be factored:

(sin(x) - 4cos(x))(sin(x) - cos(x)) = 0

Now, we have two cases:

Case 1: sin(x) - 4cos(x) = 0

sin(x) = 4cos(x)

tan(x) = 4

x = arctan(4) + kπ, where k is an integer.

Case 2: sin(x) - cos(x) = 0

sin(x) = cos(x)

tan(x) = 1

x = arctan(1) + kπ, where k is an integer.

  1. 3sin^2(x) - 2√3sin(x)cos(x) + cos^2(x) = 0:

This equation can be factored as well:

(√3sin(x) - cos(x))(3sin(x) - cos(x)) = 0

Now, we have two cases:

Case 1: √3sin(x) - cos(x) = 0

√3sin(x) = cos(x)

tan(x) = 1/√3

x = arctan(1/√3) + kπ, where k is an integer.

Case 2: 3sin(x) - cos(x) = 0

3sin(x) = cos(x)

tan(x) = 1/3

x = arctan(1/3) + kπ, where k is an integer.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос