
1) sin x - √(3) cos x=0; 2) 2sin x + cos x =0; 3) sin^2x - 5 sin x cos x+4 cos^2 =0; 4) 3sin^2 -
2√(3) sin x cos x + cos^2x=0.

Ответы на вопрос

English Launches:
sin x - √(3) cos x = 0
Divide both sides by cos x (assuming cos x is not equal to 0):
sin x / cos x - √(3) = 0 / cos x
tan x = √(3)
x = π/3 + kπ, where k is an integer
2sin x + cos x = 0
Divide both sides by cos x (assuming cos x is not equal to 0):
2tan x + 1 = 0
tan x = -1/2
x = 7π/6 + kπ, where k is an integer
sin^2x - 5 sin x cos x+4 cos^2x = 0
This equation can be factored as:
(sin x - 4 cos x)(sin x - cos x) = 0
So either sin x - 4 cos x = 0 or sin x - cos x = 0.
If sin x - 4 cos x = 0:
Divide both sides by cos^2x (assuming cos x is not equal to 0):
tan x - 4 = 0
tan x = 4
x = arctan(4) + kπ, where k is an integer
If sin x - cos x = 0:
sin x = cos x
Divide both sides by cos^2x (assuming cos x is not equal to 0):
tan x = 1
x = π/4 + kπ, where k is an integer
3sin^2x - 2√(3) sin x cos x + cos^2x = 0
This equation can be written as:
(sin x - √(3)/2 cos x)^2 + 1/4 cos^2x = 0
Since the square of a real number is always non-negative, the left-hand side of the equation is always greater than or equal to 0. Therefore, there are no real solutions for this equation.
Українська мова:
sin x - √(3) cos x = 0
Ми можемо розкласти ліву частину на добуток sin x та cos x:
sin x - √(3) cos x = 0
sin x / cos x = √(3)
tg x = √(3)
x = π/3 + πk, де k - ціле число.
2sin x + cos x = 0
Можемо поділити обидві частини на √(5) та використати формули для sin та cos кутів суми:
2sin x / √(5) + cos x / √(5) = 0
sin (x+y) = 0, де y = arccos (-2/√(5))
x = πk - y, де k - ціле число.
sin^2x - 5 sin x cos x + 4 cos^2x = 0
Ми можемо переписати це рівняння в такому вигляді:
(sin x - 4cos x)(sin x - cos x) = 0
Тоді ми маємо два випадки:
sin x - 4cos x = 0
tg x = 4
x = arctg 4 + πk, де k - ціле число.
або
sin x - cos x = 0
tg x = 1
x = π/4 + πk, де k - ціле число.
3sin^2x - 2√(3) sin x cos x + cos^2x = 0
Можемо переписати це рівняння таким чином:
(√(3)sin x - cos x)(sin x - √(3)cos x) = 0
Тоді ми маємо два випадки:
√(3)sin x - cos x = 0
tg x = 1/√(3)
x = π/6 + πk, де k - ціле число.
або
sin x - √(3)cos x = 0
tg x = √(3)
x = π/3 + πk, де k - ціле число.



To solve each of these trigonometric equations, we can use various trigonometric identities and techniques. Let's solve each equation one by one:
- sin(x) - √3 cos(x) = 0:
We can use the trigonometric identity sin(π/3) = √3/2 and cos(π/3) = 1/2 to simplify this equation:
sin(x) - √3 cos(x) = 0 sin(x) - 2(sin(π/3) cos(x) + cos(π/3) sin(x)) = 0 sin(x) - 2(sin(π/3 + x)) = 0 sin(x) = 2sin(π/3 + x)
Now, we need to find the values of x for which sin(x) = 2sin(π/3 + x). We can use the identity sin(a + b) = sin(a)cos(b) + cos(a)sin(b):
sin(x) = 2(sin(π/3)cos(x) + cos(π/3)sin(x)) sin(x) = 2(√3/2 cos(x) + 1/2 sin(x))
Now, we can rewrite sin(x) in terms of cos(x):
sin(x) = √3 cos(x) + sin(x)
Now, move sin(x) to the left side:
√3 cos(x) = 0
To solve for x, divide both sides by √3:
cos(x) = 0
Now, we know that cos(x) = 0 when x is an odd multiple of π/2:
x = π/2 + kπ, where k is an integer.
- 2sin(x) + cos(x) = 0:
This equation can be simplified by dividing both sides by cos(x):
2sin(x)/cos(x) + 1 = 0
Now, use the identity tan(x) = sin(x)/cos(x):
2tan(x) + 1 = 0
2tan(x) = -1
tan(x) = -1/2
To find the solutions for x, we can take the arctan of both sides:
x = arctan(-1/2) + kπ, where k is an integer.
- sin^2(x) - 5sin(x)cos(x) + 4cos^2(x) = 0:
This equation can be factored:
(sin(x) - 4cos(x))(sin(x) - cos(x)) = 0
Now, we have two cases:
Case 1: sin(x) - 4cos(x) = 0
sin(x) = 4cos(x)
tan(x) = 4
x = arctan(4) + kπ, where k is an integer.
Case 2: sin(x) - cos(x) = 0
sin(x) = cos(x)
tan(x) = 1
x = arctan(1) + kπ, where k is an integer.
- 3sin^2(x) - 2√3sin(x)cos(x) + cos^2(x) = 0:
This equation can be factored as well:
(√3sin(x) - cos(x))(3sin(x) - cos(x)) = 0
Now, we have two cases:
Case 1: √3sin(x) - cos(x) = 0
√3sin(x) = cos(x)
tan(x) = 1/√3
x = arctan(1/√3) + kπ, where k is an integer.
Case 2: 3sin(x) - cos(x) = 0
3sin(x) = cos(x)
tan(x) = 1/3
x = arctan(1/3) + kπ, where k is an integer.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili