Вопрос задан 24.09.2023 в 20:14.
Предмет Алгебра.
Спрашивает Елизарова Анастасия.
Знайдіть перший член геометричної прогресії (bn), якщо b3=6, b6=162.
Ответы на вопрос
Отвечает Смоловская Елена.
Смотри......................

Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для знаходження першого члена геометричної прогресії (b₁), нам потрібно знайти спільний знаменник ряду з даними членами (b₃ і b₆) і використовувати формулу для геометричної прогресії.
Спершу знайдемо частку між двома будь-якими послідовними членами геометричної прогресії:
r = b₆ / b₃ = 162 / 6 = 27.
Тепер, ми знаємо значення r, можемо використовувати формулу для n-го члена геометричної прогресії:
bₙ = b₁ * r^(n-1).
Ми знаємо b₃ і b₆, і нам потрібно знайти b₁. Використовуючи b₆, можемо обчислити значення b₁:
b₆ = b₁ * r^(6-1), 162 = b₁ * 27^5.
Тепер розв'яжемо це рівняння для b₁:
b₁ = 162 / 27^5 ≈ 0.03086419753.
Отже, перший член геометричної прогресії b₁ приблизно дорівнює 0.03086419753.
Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
