
Вопрос задан 07.09.2023 в 04:55.
Предмет Алгебра.
Спрашивает Гафуров Юсуф.
Вычислите значение выражения sin7cos47+cos7sin47 ---------------------------------- =
sin13cos41+cos13sin41 там получаются нетабличные синусы, а задание на выучивание таблицы стандартных что то странно

Ответы на вопрос

Отвечает Паринбекова Аяна.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для вычисления данного выражения мы можем воспользоваться формулой для синуса суммы углов:
sin(A + B) = sin(A)cos(B) + cos(A)sin(B)
В данном случае у нас есть следующие значения:
A = 7° B = 47° C = 13° D = 41°
Теперь мы можем применить формулу:
sin(A + B) = sin(7° + 47°) = sin(54°) sin(C + D) = sin(13° + 41°) = sin(54°)
Известно, что sin(54°) равен sin(54°), поэтому оба числителя в вашем выражении равны:
sin(7°)cos(47°) + cos(7°)sin(47°) = sin(54°)cos(41°) + cos(54°)sin(41°)
Теперь можно заметить, что оба числителя и знаменатели равны. Таким образом, значение данного выражения равно 1:
(sin(7°)cos(47°) + cos(7°)sin(47°)) / (sin(13°)cos(41°) + cos(13°)sin(41°)) = 1 / 1 = 1


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili