
Найдите множество решений неравенства: (4x - 1)(x - 7) < 0


Ответы на вопрос

корни 1/4 и 7
-∞ 1/4 7 +∞
+ - +
Ответ: х∈ (1/4; 7)



Чтобы найти множество решений данного неравенства, нужно разложить его на множители и определить знак каждого из них. Затем нужно определить интервалы значений переменной x, для которых неравенство выполняется.
Итак, разложим множество на множители:
(4x - 1)(x - 7) < 0
Чтобы найти значения x, при которых неравенство выполняется, рассмотрим каждый множитель отдельно:
- (4x - 1) < 0
- (x - 7) < 0
Решим каждое из уравнений:
- (4x - 1) < 0
Добавим 1 к обеим сторонам:
4x < 1
Разделим обе стороны на 4 (заметим, что знак неравенства меняется, так как делим на положительное число):
x < 1/4
- (x - 7) < 0
Добавим 7 к обеим сторонам:
x < 7
Теперь мы имеем два неравенства:
- x < 1/4
- x < 7
Теперь определим интервалы, для которых выполняется неравенство.
Когда оба множителя отрицательны (т.е., когда x < 1/4 и x < 7), произведение будет положительным. Однако неравенство задает условие, что произведение должно быть меньше нуля, поэтому нам интересны только те значения x, при которых только один из множителей отрицателен.
x < 1/4: В этом интервале все значения x меньше 1/4.
x < 7: В этом интервале все значения x меньше 7.
Таким образом, множество решений неравенства - это объединение интервалов:
(-∞, 1/4) U (1/4, 7)
То есть множество всех значений x, при которых (4x - 1)(x - 7) < 0, представлено интервалами от минус бесконечности до 1/4 и от 1/4 до 7.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili