
√(2)*sinX-√(2)*cosX=1


Ответы на вопрос

ОТВЕТ:



To solve the equation √(2) * sin(X) - √(2) * cos(X) = 1, we can follow these steps:
Step 1: Combine the like terms on the left side of the equation. Step 2: Isolate either sin(X) or cos(X) by moving the other term to the right side of the equation. Step 3: Use trigonometric identities to simplify the equation and solve for X.
Let's start with Step 1:
√(2) * sin(X) - √(2) * cos(X) = 1
Step 1: Combine like terms on the left side:
√(2) * (sin(X) - cos(X)) = 1
Step 2: Isolate sin(X) - cos(X):
(sin(X) - cos(X)) = 1 / √(2)
Step 3: Now we can use the trigonometric identity sin(π/4) = cos(π/4) = 1 / √(2):
sin(X) - cos(X) = sin(π/4)
Now, we'll use another trigonometric identity sin(θ - π/4) = sin(θ) * cos(π/4) - cos(θ) * sin(π/4):
sin(X - π/4) = sin(X) * cos(π/4) - cos(X) * sin(π/4)
sin(π/4) is 1/√(2), and cos(π/4) is also 1/√(2), so we can substitute these values:
sin(X - π/4) = (1/√(2)) * sin(X) - (1/√(2)) * cos(X)
Now, we know that sin(X) - cos(X) = sin(π/4), so we can make the substitution:
sin(X - π/4) = (1/√(2)) * sin(π/4)
Since sin(π/4) is 1/√(2), we have:
sin(X - π/4) = (1/√(2)) * (1/√(2))
sin(X - π/4) = 1/2
Now, to solve for X, we can take the inverse sine (arcsin) of both sides:
X - π/4 = arcsin(1/2)
X = arcsin(1/2) + π/4
Using the unit circle or a calculator, we find that arcsin(1/2) = π/6:
X = π/6 + π/4
X = (π + 3π)/12
X = 4π/12
X = π/3
So the solution to the equation √(2) * sin(X) - √(2) * cos(X) = 1 is X = π/3.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili