Вопрос задан 30.07.2023 в 04:07. Предмет Алгебра. Спрашивает Гамандий Света.

Составить уравнение касательной к графику функции: f(x)= -x^2+3x+2 в точке с абсциссой x0= -1.

Помогите, срочно нужно.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федів Антон.
Уравнение касательной имеет вид:
у - у₀ = f'(x₀)(x - x₀)
x₀ = -1,  y₀ = f(-1) = -(-1)² +3*(-1) +2 = -1 -3 +2 = -2
f'(x) = -2x +3
f'(x₀) = f'(-1) = -2*(-1) +3 = 5
вот теперь само уравнение пишем:
у +2 = 5(х +1)
у +2 = 5х +5
у = 5х +3
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для того чтобы составить уравнение касательной к графику функции в заданной точке, мы должны найти производную функции и вычислить ее значение в этой точке. Затем, используя значение производной в точке, можно записать уравнение касательной.

  1. Найдем производную функции f(x): f(x) = -x^2 + 3x + 2

Для нахождения производной используем правило дифференцирования степенной функции: (x^n)' = n*x^(n-1)

f'(x) = d/dx (-x^2) + d/dx (3x) + d/dx (2) f'(x) = -2x + 3

  1. Теперь найдем значение производной в заданной точке x0 = -1: f'(-1) = -2*(-1) + 3 = 2 + 3 = 5

  2. Уравнение касательной имеет вид y = mx + c, где m - значение производной в точке x0, а (x0, f(x0)) - координаты заданной точки.

Таким образом, уравнение касательной к графику функции f(x) = -x^2 + 3x + 2 в точке с абсциссой x0 = -1:

y = 5x + b

Для нахождения b (свободного члена) подставим координаты точки x0 = -1 и f(x0) в уравнение:

f(-1) = -((-1)^2) + 3*(-1) + 2 = -1 - 3 + 2 = -2

Таким образом, координаты заданной точки: (-1, -2).

Теперь, подставим эти значения в уравнение касательной:

-2 = 5*(-1) + b -2 = -5 + b b = -2 + 5 b = 3

Итак, уравнение касательной к графику функции f(x) = -x^2 + 3x + 2 в точке с абсциссой x0 = -1:

y = 5x + 3

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос