Вопрос задан 28.07.2023 в 01:01. Предмет Алгебра. Спрашивает Потанина Алина.

Помогите 15 балов"!! Решить систему уравнений 2^x+3^y=17 2^x-3^y=15

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Устинкова Елизавета.

I hope this helps you


0 0
Отвечает Бравиков Эдуард.

Дана систему уравнений

{2^x+3^y=17

{2^x-3^y=15 сложим 2 уравнения:

------------------

2* 2^x = 32

2^(x+1) = 2^5

x+ 1 = 5

x = 5 - 1 = 4.

3^y = 17  - 2^x = 17 - 16 = 1 = 3^0.

y = 0.

Ответ: х = 4, у = 0.



0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, давайте решим данную систему уравнений.

Система уравнений:

  1. 2x+3y=172^x + 3^y = 17
  2. 2x3y=152^x - 3^y = 15

Для решения этой системы можно использовать метод исключения переменных. Вычтем уравнение 2 из уравнения 1:

(2x+3y)(2x3y)=1715(2^x + 3^y) - (2^x - 3^y) = 17 - 15

Таким образом, 23y=22 \cdot 3^y = 2. Разделим обе части уравнения на 2:

3y=13^y = 1

Теперь найдем значение переменной yy. Очевидно, что 30=13^0 = 1, следовательно y=0y = 0.

Теперь, чтобы найти значение переменной xx, подставим y=0y = 0 в любое из исходных уравнений (я возьму первое):

2x+30=172^x + 3^0 = 17

2x+1=172^x + 1 = 17

Вычтем 1 из обеих сторон:

2x=162^x = 16

Теперь заметим, что 24=162^4 = 16, поэтому x=4x = 4.

Таким образом, решение системы уравнений:

x=4x = 4

y=0y = 0

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос