
Log9 √5 * log25 √3


Ответы на вопрос







To simplify the expression, we can use logarithm properties to combine the two logarithms:
- log_b(xy) = log_b(x) + log_b(y)
- log_b(√x) = (1/2) * log_b(x)
Using these properties, let's simplify the expression:
log9(√5) * log25(√3)
Step 1: Simplify each logarithm separately log9(√5) = (1/2) * log9(5) log25(√3) = (1/2) * log25(3)
Step 2: Convert the bases to a common base. We can use the change of base formula: log_b(a) = log_c(a) / log_c(b)
Let's choose log2 as the common base:
log9(√5) = (1/2) * (log2(5) / log2(9)) log25(√3) = (1/2) * (log2(3) / log2(25))
Step 3: Simplify further:
log9(√5) = (1/2) * (log2(5) / log2(9)) = (1/2) * (log2(5) / (log2(3^2))) = (1/2) * (log2(5) / (2 * log2(3))) = (1/2) * (1/2) * (log2(5) / log2(3))
log25(√3) = (1/2) * (log2(3) / log2(25)) = (1/2) * (log2(3) / (log2(5^2))) = (1/2) * (log2(3) / (2 * log2(5))) = (1/2) * (1/2) * (log2(3) / log2(5))
Step 4: Combine the expressions: log9(√5) * log25(√3) = (1/2) * (1/2) * (log2(5) / log2(3)) * (1/2) * (1/2) * (log2(3) / log2(5))
The common factors cancel out:
log9(√5) * log25(√3) = (1/2) * (1/2) * (1/2) * (1/2) = 1/16
So, the final simplified value of the expression is 1/16.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili