Вопрос задан 26.07.2023 в 09:39. Предмет Алгебра. Спрашивает Михайлычев Захар.

(x-3)(x-4)(x-5)(x-6)=1680

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Орынбасарова Жұлдыз.

///////////////////////////////////////////////////////////////////


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the equation (x3)(x4)(x5)(x6)=1680(x-3)(x-4)(x-5)(x-6) = 1680, we can follow these steps:

Step 1: Expand the equation Step 2: Set it to zero and rearrange Step 3: Solve for xx

Let's proceed with these steps:

Step 1: Expand the equation Expand the left side of the equation (x3)(x4)(x5)(x6)(x-3)(x-4)(x-5)(x-6) using the FOIL method (First, Outer, Inner, Last):

(x3)(x4)(x5)(x6)=(x27x+12)(x211x+30)(x-3)(x-4)(x-5)(x-6) = (x^2 - 7x + 12)(x^2 - 11x + 30)

Step 2: Set it to zero and rearrange Now we have:

(x27x+12)(x211x+30)=1680(x^2 - 7x + 12)(x^2 - 11x + 30) = 1680

Subtract 1680 from both sides to set the equation to zero:

(x27x+12)(x211x+30)1680=0(x^2 - 7x + 12)(x^2 - 11x + 30) - 1680 = 0

Step 3: Solve for xx Now, we need to find the solutions for xx. We can use various methods, but in this case, we can try to factorize the equation further:

(x27x+12)(x211x+30)1680=(x27x+1240)(x211x+30)=(x27x28)(x211x+30)=0(x^2 - 7x + 12)(x^2 - 11x + 30) - 1680 = (x^2 - 7x + 12 - 40)(x^2 - 11x + 30) = (x^2 - 7x - 28)(x^2 - 11x + 30) = 0

Now, we have two quadratic equations:

x27x28=0x^2 - 7x - 28 = 0 and x211x+30=0x^2 - 11x + 30 = 0

Let's solve them one by one:

For x27x28=0x^2 - 7x - 28 = 0:

To factorize, we look for two numbers that multiply to give -28 and add up to -7. Those numbers are -4 and 7.

So, x27x28=(x4)(x+7)=0x^2 - 7x - 28 = (x - 4)(x + 7) = 0

Setting each factor to zero:

x4=0x=4x - 4 = 0 \Rightarrow x = 4

x+7=0x=7x + 7 = 0 \Rightarrow x = -7

For x211x+30=0x^2 - 11x + 30 = 0:

To factorize, we look for two numbers that multiply to give 30 and add up to -11. Those numbers are -5 and -6.

So, x211x+30=(x5)(x6)=0x^2 - 11x + 30 = (x - 5)(x - 6) = 0

Setting each factor to zero:

x5=0x=5x - 5 = 0 \Rightarrow x = 5

x6=0x=6x - 6 = 0 \Rightarrow x = 6

Now we have four potential solutions for xx: x=4x = 4, x=7x = -7, x=5x = 5, and x=6x = 6.

However, we should check whether any of these solutions make the original equation undefined (e.g., division by zero) or result in the left-hand side being equal to zero.

Let's plug each value back into the original equation (x3)(x4)(x5)(x6)=1680(x-3)(x-4)(x-5)(x-6) = 1680 and see which ones satisfy the equation:

  1. x=4x = 4: (43)(44)(45)(46)=10(1)(2)=01680(4-3)(4-4)(4-5)(4-6) = 1 * 0 * (-1) * (-2) = 0 \neq 1680

  2. x=7x = -7: (73)(74)(75)(76)=(10)(11)(12)(13)=171601680(-7-3)(-7-4)(-7-5)(-7-6) = (-10) * (-11) * (-12) * (-13) = 17160 \neq 1680

  3. x=5x = 5: (53)(54)(55)(56 0 0

    Похожие вопросы

    Топ вопросов за вчера в категории Алгебра

    Последние заданные вопросы в категории Алгебра