Вопрос задан 20.07.2023 в 15:49. Предмет Алгебра. Спрашивает Завадский Женя.

-2(2х+1)+2,5=3(у+2)-8х. 8-5(4-х)=6у-(5-х) решите систему уравнений​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сидоров Серёжа.

\left \{ {{-2(2x+1)+2,5=3(y+2)-8x} \atop {8-5(4-x)=6y-(5-x)}} \right. \\\\\left \{ {{-4x - 2 + 2,5 = 3y + 6 - 8x} \atop {8-20+5x = 6y - 5 +x}} \right.\\ \\\left \{ {{-4x + 8x - 3y = 6 + 2 - 2,5} \atop {5x - x - 6y = -5 - 8 +20}} \right.\\ \\\left \{ {{4x - 3y = 5,5} \atop {4x - 6y = 7}} \right.\\\\\left \{ {{4x - 3y = 5,5} \atop {-4x + 6y = -7}} \right. \\\\3y = -1,5\\y = - 0,5\\\\\left \{ {{4x - 3y = 5,5} \atop {y = -0,5}} \right. \\\\\left \{ {{4x - (-1,5) = 5,5} \atop {y = -0,5}} \right.

\left \{ {{4x+1,5 = 5,5} \atop {y = -0,5}} \right. \\\\\left \{ {{4x = 4} \atop {y = -0,5}} \right. \\\\\left \{ {{x = 1} \atop {y = -0,5}} \right.

Ответ: (1; -0,5)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the system of equations, we'll start by solving each equation separately and then find the values of 'x' and 'y' that satisfy both equations simultaneously.

  1. -2(2x + 1) + 2.5 = 3(y + 2) - 8x

Let's simplify the equation step by step:

-4x - 2 + 2.5 = 3y + 6 - 8x

Next, combine like terms:

-4x + 0.5 = 3y - 8x + 6

Now, move all terms with 'x' to one side and all terms with 'y' to the other side:

-4x + 8x = 3y - 6 - 0.5

4x = 3y - 6.5

Now, let's move all terms with 'x' to one side and all constant terms to the other side:

4x - 3y = -6.5

  1. 8 - 5(4 - x) = 6y - (5 - x)

Let's simplify the equation step by step:

8 - 20 + 5x = 6y - 5 + x

Next, combine like terms:

-12 + 5x = 6y + x - 5

Now, move all terms with 'x' to one side and all terms with 'y' to the other side:

5x - x = 6y - 5 + 12

4x = 6y + 7

Now, let's move all terms with 'x' to one side and all constant terms to the other side:

4x - 6y = 7

Now, we have the following system of equations:

  1. 4x - 3y = -6.5
  2. 4x - 6y = 7

To solve this system, we can use the method of elimination. We'll subtract equation 1 from equation 2 to eliminate 'x':

(4x - 6y) - (4x - 3y) = 7 - (-6.5)

Simplifying:

4x - 6y - 4x + 3y = 7 + 6.5

Combine like terms:

-3y = 13.5

Now, isolate 'y' by dividing both sides by -3:

y = -13.5 / 3

y = -4.5

Now that we have the value of 'y', we can find 'x' by substituting this value into either of the original equations. Let's use the first equation:

4x - 3y = -6.5

4x - 3(-4.5) = -6.5

4x + 13.5 = -6.5

Now, move constant term to the other side:

4x = -6.5 - 13.5

4x = -20

Finally, divide both sides by 4 to find 'x':

x = -20 / 4

x = -5

So, the solution to the system of equations is x = -5 and y = -4.5.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос