Вопрос задан 19.10.2020 в 08:56. Предмет Алгебра. Спрашивает Курбанов Мурад.

Прямая y= -3x-8 является касательной к графику функции f(x)=10x^2+23x+c. Найдите с.

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Киселев Дима.
По формуле касательной y=f'(x0)(x-x0) + f(x0)=f'(x0)*x +f(x0)-f'(xo)*xo х0- неизвестная константа точка касания тогда число -3 будет равно f'(xo) надеюсь понятно тк f(x0)-f'(xo)*x0 тоже константа не помноженная на x найдем производную 10x^2+23x+c=0 тк c-константа то получим f'(x)=20x+23 f'(x0)=20x0 + 23=-3 20x0=-26 xo=-13/10 подставим теперь зная что f(x0)-f'(xo)*xo=-8 f(xo)-3*-13/10=8 f(xo)=119/10 теперь подставим х0 в уравнение и приравняем 169/10-23*13/10+с=119/10 откуда 169-23*13+10с=119 10c=119-169+299 x=249/10=24,9
0 0

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос