
Вопрос задан 15.07.2023 в 12:20.
Предмет Алгебра.
Спрашивает Ишутина Анна.
9y^2-10y+1=0 Найти корни квадр. Уравнения


Ответы на вопрос

Отвечает Калашников Владислав.
Ответ:
Объяснение:
p.s. D = b^2 - 4*a*c



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения квадратного уравнения вида 9y^2 - 10y + 1 = 0, можно использовать формулу дискриминанта и формулу корней.
Формула дискриминанта: D = b^2 - 4ac, где a, b и c - коэффициенты уравнения.
В данном уравнении: a = 9 b = -10 c = 1
Вычислим дискриминант: D = (-10)^2 - 4 * 9 * 1 D = 100 - 36 D = 64
Поскольку дискриминант D положительный, у уравнения есть два действительных корня.
Формула корней: y = (-b ± √D) / (2a)
Подставим значения в формулу: y1 = (-(-10) + √64) / (2 * 9) y1 = (10 + 8) / 18 y1 = 18 / 18 y1 = 1
y2 = (-(-10) - √64) / (2 * 9) y2 = (10 - 8) / 18 y2 = 2 / 18 y2 = 1/9
Таким образом, корни квадратного уравнения 9y^2 - 10y + 1 = 0 равны y1 = 1 и y2 = 1/9.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili