Вопрос задан 12.07.2023 в 14:09. Предмет Алгебра. Спрашивает Байчурина Катя.

Представить в виде квадрата многочлен 9x+6x+1

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Макаренко Анастасия.

Відповідь: 3 в квадрате + 6х +1

0 0
Отвечает Кун Никита.
Получается (3х+1) в квадрате
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для представления многочлена в виде квадрата, мы должны найти такой многочлен, который будет иметь квадратный корень из исходного многочлена.

Исходный многочлен: 9x^2 + 6x + 1

Чтобы представить его в виде квадрата, нам нужно найти квадратный корень его первых двух членов.

Квадратный корень из первого члена (9x^2) равен 3x, так как (3x)^2 = 9x^2.

Квадратный корень из второго члена (6x) равен 2√3x, так как (2√3x)^2 = 4 * 3x^2 = 12x^2.

Теперь, чтобы представить многочлен в виде квадрата, мы можем записать его так:

(3x + 2√3x + 1)^2

Раскрывая квадрат, получим:

(3x + 2√3x + 1)^2 = (3x)^2 + 2 * (3x) * (2√3x) + (2√3x)^2 = 9x^2 + 12x^2 + 12x^2 + 1 = 9x^2 + 6x + 1

Таким образом, исходный многочлен 9x^2 + 6x + 1 можно представить в виде квадрата (3x + 2√3x + 1)^2.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос