
Sin^{2}3x-cosx^{2}\geq-0.5


Ответы на вопрос

Sin^{2}3x-cosx^{2}\geq-0.5
Ответ:
Х принадлежит R (0;_0.5)



To solve the inequality , we can break it down step by step.
First, let's simplify the left side of the inequality using trigonometric identities:
Using the trigonometric identity , we can simplify the expression further:
Now, the inequality becomes:
Let's combine the terms involving sine:
We can see that is always between 0 and 1, so is always greater than or equal to 0.
Now, let's focus on . This term varies between 0 and 1 as well.
To make progress, we can see that the maximum value of is 1 (when ), and the minimum value is 0. Therefore, will always be between 0 and 1.
Putting everything together:
Since and are always non-negative, the smallest possible value of the left side is . Since -1 is less than -0.5, the inequality is true for all values of .
In conclusion, the inequality is true for all real values of .


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili