
6x3y4 – xy – 3x4y ≥ 0


Ответы на вопрос

Ответ:72xy-xy-12xy>0
59xy>0
xy>0
Объяснение:1000000000000000000000000000000%



To solve the inequality 6x3y4 – xy – 3x4y ≥ 0, we can factor out common terms to simplify it. The equation becomes:
xy(6y^3 - 1) - 3x^4y ≥ 0
Now, we can analyze the sign of each factor individually.
For xy, the sign depends on the values of x and y. If both x and y are positive or both are negative, xy will be positive. If one of them is negative and the other is positive, xy will be negative.
For 6y^3 - 1, let's examine the critical points. Setting 6y^3 - 1 = 0, we have:
6y^3 = 1 y^3 = 1/6 y = (1/6)^(1/3)
The value of (1/6)^(1/3) is approximately 0.628.
By plotting a number line and including the critical point at y ≈ 0.628, we can determine the sign of 6y^3 - 1 in different intervals:
Interval 1: (-∞, 0.628) In this interval, 6y^3 - 1 is negative.
Interval 2: (0.628, +∞) In this interval, 6y^3 - 1 is positive.
Now, let's combine the signs of xy and 6y^3 - 1 based on the intervals:
Interval 1: (-∞, 0.628) In this interval, xy is negative, and 6y^3 - 1 is negative. The product of a negative and a negative is positive.
Interval 2: (0.628, +∞) In this interval, xy is positive, and 6y^3 - 1 is positive. The product of a positive and a positive is positive.
To satisfy the inequality 6x3y4 – xy – 3x4y ≥ 0, the expression must be positive or zero.
Therefore, the solution to the inequality is:
(-∞, 0.628] ∪ [0, +∞)


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili