Вопрос задан 01.07.2023 в 08:05. Предмет Алгебра. Спрашивает Кателевская Александра.

Упростить вырожение 1)2а+b\6a-b-b\2a;2)4a+1\a-1;3)a-1-2-3a\a-2;4)x+y-x^2+y^2\x-y;5)a-3\a+3-a+2\a-2

Помогите пожалуйста
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жанибек Аман.

Ответ:

1)

2a +  \frac{1}{6} ba - b - b \div 2 \times a =

2a +  \frac{1}{6} ba - b -  \frac{1}{2} ba =

2a +  \frac{1}{6} ab - b -  \frac{1}{2} ba =

2a +  \frac{1}{6} ab - b -  \frac{1}{2} ab =

2a -  \frac{1}{3} ab - b

2)

4a +  \frac{1}{a}  - 3 =

 \frac{4a { }^{2}  + 1 - 3a}{a}  =

 \frac{4a {}^{2} - 3a + 1 }{a}

3)

a - 1 - 2 - 3 \times 1 =

a - 1 - 2 - 3 = a - 6

4)

x - x {}^{2}  + y {}^{2}  \div x =

x - x {}^{2}  +  \frac{y {}^{2} }{x}  =

 \frac{ {x}^{2}  - 3x {}^{3} + y {}^{2}  }{x}

5)

 - 3 \div a + 3 + 2 \div a - 2 =

 -  \frac{3}{a}  + 3 + 2 \div a - 2 =

 -  \frac{3}{a}  + 3 -  \frac{2}{a}  - 2 =

 -  \frac{3}{a}  + 1 +  \frac{2}{a}  =

 \frac{ - 3 + a + 2}{a}  =  \frac{ - 1 + a}{a}

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Конечно, я помогу упростить ваши выражения:

  1. 2a+b6ab2a\frac{2a+b}{6a} - \frac{b}{2a} Для начала найдем общий знаменатель для обоих дробей, он равен 6a2a=12a26a \cdot 2a = 12a^2.

Теперь приведем дроби к общему знаменателю: 2a+b6ab2a=(2a+b)2a12a2b6a12a2\frac{2a+b}{6a} - \frac{b}{2a} = \frac{(2a+b) \cdot 2a}{12a^2} - \frac{b \cdot 6a}{12a^2}

Раскроем скобки: 4a2+2ab12a26ab12a2\frac{4a^2 + 2ab}{12a^2} - \frac{6ab}{12a^2}

Теперь объединим дроби: 4a2+2ab6ab12a2=4a24ab12a2=4a(ab)12a2=ab3a\frac{4a^2 + 2ab - 6ab}{12a^2} = \frac{4a^2 - 4ab}{12a^2} = \frac{4a(a - b)}{12a^2} = \frac{a - b}{3a}

  1. 4a+1a1\frac{4a+1}{a-1} Здесь нет общего знаменателя, поэтому давайте оставим выражение в этом виде.

  2. a123aa-1-2-3a Просто выполним операции с числами и переменной: a123a=2a3a - 1 - 2 - 3a = -2a - 3

  3. x+yx2+y2xy\frac{x+y-x^2+y^2}{x-y} Для начала выполним раскрытие скобок: x+yx2+y2xy=(xx2)+(y+y2)xy\frac{x+y-x^2+y^2}{x-y} = \frac{(x - x^2) + (y + y^2)}{x - y}

Факторизуем числитель: x(1x)+y(1+y)xy\frac{x(1 - x) + y(1 + y)}{x - y}

Приведем подобные слагаемые: xx2+y+y2xy\frac{x - x^2 + y + y^2}{x - y}

Теперь мы можем видеть, что xx2x - x^2 и y+y2y + y^2 нельзя дополнительно упростить, так что это окончательное упрощенное выражение.

  1. a3a+3a+2a2\frac{a-3}{a+3} - \frac{a+2}{a-2} Найдем общий знаменатель для обоих дробей, он равен (a+3)(a2)(a + 3)(a - 2).

Приведем дроби к общему знаменателю: (a3)(a2)(a+3)(a2)(a+2)(a+3)(a+3)(a2)\frac{(a-3)(a-2)}{(a+3)(a-2)} - \frac{(a+2)(a+3)}{(a+3)(a-2)}

Выполним операции с числителями: (a25a+6)(a2+5a+6)(a+3)(a2)\frac{(a^2 - 5a + 6) - (a^2 + 5a + 6)}{(a+3)(a-2)}

Упростим числитель: a25a+6a25a6(a+3)(a2)=10a(a+3)(a2)\frac{a^2 - 5a + 6 - a^2 - 5a - 6}{(a+3)(a-2)} = \frac{-10a}{(a+3)(a-2)}

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос