Вопрос задан 28.06.2023 в 07:49. Предмет Алгебра. Спрашивает Лазарев Алексей.

X^4-26x^2+25=0 (x+3)^2-13(x+3)+36=0​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Воробьева Кира.

Ответ:1)x= -5

x= 5

X=1

X=-1

2)

x=1 x=6

Объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the equations x426x2+25=0x^4 - 26x^2 + 25 = 0 and (x+3)213(x+3)+36=0(x+3)^2 - 13(x+3) + 36 = 0, you can use a substitution method to simplify the equations.

Let's start with the first equation:

x426x2+25=0x^4 - 26x^2 + 25 = 0

This is a quadratic equation in terms of x2x^2. You can make a substitution to simplify it. Let y=x2y = x^2, then the equation becomes:

y226y+25=0y^2 - 26y + 25 = 0

Now, you can solve this quadratic equation for yy. Factoring is one way to do it:

(y1)(y25)=0(y - 1)(y - 25) = 0

Now, set each factor equal to zero and solve for yy:

  1. y1=0y - 1 = 0y=1y = 1
  2. y25=0y - 25 = 0y=25y = 25

Now that you have the values of yy, you can find the corresponding values of xx by taking the square root:

For y=1y = 1: x2=1x^2 = 1 This gives two solutions: x=1x = 1 and x=1x = -1.

For y=25y = 25: x2=25x^2 = 25 This also gives two solutions: x=5x = 5 and x=5x = -5.

So, for the first equation, you have four solutions: x=1x = 1, x=1x = -1, x=5x = 5, and x=5x = -5.

Now, let's move on to the second equation:

(x+3)213(x+3)+36=0(x+3)^2 - 13(x+3) + 36 = 0

You can simplify this equation by making a substitution as well. Let z=x+3z = x + 3, then the equation becomes:

z213z+36=0z^2 - 13z + 36 = 0

Now, you can solve this quadratic equation for zz. Factoring it:

(z9)(z4)=0(z - 9)(z - 4) = 0

Set each factor equal to zero and solve for (z:

  1. z9=0z - 9 = 0z=9z = 9
  2. z4=0z - 4 = 0z=4z = 4

Now that you have the values of zz, you can find the corresponding values of xx:

For z=9z = 9: x+3=9x + 3 = 9 This gives x=6x = 6.

For z=4z = 4: x+3=4x + 3 = 4 This gives x=1x = 1.

So, for the second equation, you have two solutions: x=6x = 6 and x=1x = 1.

In summary, the solutions to the equations are:

For x426x2+25=0x^4 - 26x^2 + 25 = 0: x=1x = 1, x=1x = -1, x=5x = 5, and x=5x = -5.

For (x+3)213(x+3)+36=0(x+3)^2 - 13(x+3) + 36 = 0: x=6x = 6 and x=1x = 1.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 4 Лисов Андрей

Последние заданные вопросы в категории Алгебра

Задать вопрос