Вопрос задан 27.06.2023 в 16:52. Предмет Алгебра. Спрашивает Жарковский Арсений.

Знайдіть множину всіх розв'язків нерівністі: (х+1)(х+2)<0​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Молдағалиева Ақмарал.

Объяснение:

Решение на фотографии


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Щоб знайти множину всіх розв'язків нерівності (х+1)(х+2) < 0, спростимо її спочатку:

(х+1)(х+2) < 0

Для цього давайте розглянемо знак цієї нерівності на інтервалах між коренями рівняння (х+1)(х+2) = 0, тобто коли x + 1 = 0 і x + 2 = 0.

Корені рівняння (х+1)(х+2) = 0:

  1. x + 1 = 0 => x = -1
  2. x + 2 = 0 => x = -2

Тепер розглянемо ці інтервали:

  1. x < -2
  2. -2 < x < -1
  3. x > -1

Тепер виберемо тестову точку з кожного інтервалу, наприклад:

  1. x = -3
  2. x = -1.5
  3. x = 0

Підставимо їх в нерівність (х+1)(х+2) < 0, щоб визначити знак виразу на кожному інтервалі:

  1. (-3 + 1)(-3 + 2) = (-2)(-1) = 2 > 0
  2. (-1.5 + 1)(-1.5 + 2) = (-0.5)(0.5) = -0.25 < 0
  3. (0 + 1)(0 + 2) = (1)(2) = 2 > 0

Отже, розв'язками нерівності (х+1)(х+2) < 0 є всі значення x, що знаходяться на інтервалі (-2, -1). Множина всіх розв'язків цієї нерівності виглядає наступним чином:

{-2 < x < -1}

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос