
3) (a - b)(a + b2);5) (72 - 3y)(7t2 + 3y);


Ответы на вопрос

3)
5)
Удачи



It looks like you have two algebraic expressions, and you would like me to perform some calculations with them. Let's simplify these expressions:
- (a - b)(a + b^2):
To simplify this expression, we can use the difference of squares formula, which states that (x - y)(x + y) = x^2 - y^2. In this case, a is like x, and b is like y.
So, (a - b)(a + b^2) simplifies to:
a^2 - b^2
- (72 - 3y)(7t^2 + 3y):
To simplify this expression, you can use the distributive property, which states that for any real numbers a, b, and c:
(a + b)(c) = ac + bc
So, applying this property to your expression:
(72 - 3y)(7t^2 + 3y) simplifies to:
72 * 7t^2 - 72 * 3y - 3y * 7t^2 - 3y * 3y
Now, let's simplify each term separately:
- 72 * 7t^2 = 504t^2
- 72 * 3y = -216y
- 3y * 7t^2 = -21t^2y
- 3y * 3y = -9y^2
So, the simplified expression is:
504t^2 - 216y - 21t^2y - 9y^2
If you have any further questions or need additional assistance, please, let me know.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili