
1)4^2-20=0 2)3x^2+5x=0 3) x^2-5x-24=0 4)2x^2+13x=6=0 5)7x^2-6x+2=0 6)4x^2+12x+9=0


Ответы на вопрос

1) 4²-20=0
16-20=0
-4 =/= 0
2) 3x²+5x=0
x(3x+5)=0
x=0 3x+5=0
x=0 x=
3) x²-5x-24=0
x²+3x-8x-24=0
x(x+3)-8(x+3)=0
(x+3)(x-8)=0
x+3=0 x-8=0
x=-3 x=8
4)2x²+13x+6=0
2x²+12x+x+6=0
2x(х+6)+(х+6)=0
(x+6)(2x+1)=0
x+6=0 2x+1=0
x=-6 2x=-1
x=-
5) 7x²-6x+2=0
(тут какая-то ошибка)
6)4x²+12x+9=0
(2x+3)²=0
2x+3=0
2x=-3
x=-3:2
x=-1,5



To solve each of these quadratic equations, we can use the quadratic formula:
For an equation in the form of ax^2 + bx + c = 0, the quadratic formula is:
x = (-b ± √(b² - 4ac)) / (2a)
Let's solve each of the equations you provided:
- 4^2 - 20 = 0
This equation doesn't appear to be quadratic. It simplifies to 16 - 20 = -4, which is not equal to zero.
- 3x^2 + 5x = 0
a = 3, b = 5, and c = 0 in this equation.
Using the quadratic formula:
x = (-5 ± √(5² - 4 * 3 * 0)) / (2 * 3) x = (-5 ± √25) / 6 x = (-5 ± 5) / 6
There are two solutions:
x₁ = (-5 + 5) / 6 = 0/6 = 0 x₂ = (-5 - 5) / 6 = -10/6 = -5/3
So, the solutions are x = 0 and x = -5/3.
- x^2 - 5x - 24 = 0
a = 1, b = -5, and c = -24 in this equation.
Using the quadratic formula:
x = (5 ± √((-5)² - 4 * 1 * (-24))) / (2 * 1) x = (5 ± √(25 + 96)) / 2 x = (5 ± √121) / 2 x = (5 ± 11) / 2
There are two solutions:
x₁ = (5 + 11) / 2 = 16/2 = 8 x₂ = (5 - 11) / 2 = -6/2 = -3
So, the solutions are x = 8 and x = -3.
- 2x^2 + 13x - 6 = 0
a = 2, b = 13, and c = -6 in this equation.
Using the quadratic formula:
x = (-13 ± √(13² - 4 * 2 * (-6))) / (2 * 2) x = (-13 ± √(169 + 48)) / 4 x = (-13 ± √217) / 4
There are two solutions:
x₁ = (-13 + √217) / 4 x₂ = (-13 - √217) / 4
These are the exact solutions. If you want decimal approximations, you can calculate them.
- 7x^2 - 6x + 2 = 0
This equation doesn't have real solutions because the discriminant (the value inside the square root in the quadratic formula) is negative. So, there are no real solutions.
- 4x^2 + 12x + 9 = 0
a = 4, b = 12, and c = 9 in this equation.
Using the quadratic formula:
x = (-12 ± √(12² - 4 * 4 * 9)) / (2 * 4) x = (-12 ± √(144 - 144)) / 8 x = (-12 ± √0) / 8
The discriminant is zero, which means there is only one real solution:
x₁ = (-12 + 0) / 8 = -12/8 = -3/2
So, the solution is x = -3/2.


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili