Вопрос задан 24.06.2023 в 14:41. Предмет Алгебра. Спрашивает Березкин Иван.

Разложите на множители 1)2ax^3-54ay^3 2)x^2-8x+16-2xy+8y

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Бахтиев Ринат.

Ответ:

решение смотри на фотографии


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
  1. Давайте разложим выражение 2ax^3 - 54ay^3 на множители.

Сначала вынесем общий множитель, который в данном случае является 2a:

2a(x^3 - 27y^3).

Теперь нам нужно разложить разность кубов внутри скобок. Формула для разности кубов следующая:

a^3 - b^3 = (a - b)(a^2 + ab + b^2).

В данном случае, a = x и b = 3y:

x^3 - 27y^3 = (x - 3y)(x^2 + 3xy + 9y^2).

Итак, разложение на множители для выражения 2ax^3 - 54ay^3:

2a(x - 3y)(x^2 + 3xy + 9y^2).

  1. Теперь разложим выражение x^2 - 8x + 16 - 2xy + 8y на множители.

Сначала давайте выделим квадратное уравнение x^2 - 8x + 16, которое можно факторизовать как квадрат полного квадрата:

x^2 - 8x + 16 = (x - 4)^2.

Теперь вернемся к оставшимся слагаемым -2xy + 8y. Возьмем общий множитель -2y:

-2y(x - 4).

Итак, разложение на множители для выражения x^2 - 8x + 16 - 2xy + 8y:

(x - 4)^2 - 2y(x - 4).

Теперь мы можем выделить общий множитель (x - 4) и получим:

(x - 4)(x - 4 - 2y).

Итоговое разложение:

(x - 4)(x - 2y - 4).

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос