Вопрос задан 23.06.2023 в 03:48. Предмет Алгебра. Спрашивает Миро Ада.

Прямая y=kx+b проходит через точку A(-3;26) и B(5;-22). Найдите a и b и запишите ответ. Помогите

пожалуйста! (( решать нужно через систему уравнений ))
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Степаненко София.

Ответ:

а = -6, b = 8

Объяснение:

Объяснение на фотографии.


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения уравнения прямой, проходящей через две заданные точки, вы можете использовать систему уравнений с двумя неизвестными (k и b), которая учитывает координаты этих точек.

У нас есть две точки A(-3, 26) и B(5, -22), и мы ищем уравнение прямой y = kx + b.

  1. Используем точку A(-3, 26) для первого уравнения: 26 = k(-3) + b

  2. Используем точку B(5, -22) для второго уравнения: -22 = k(5) + b

Теперь у нас есть система двух уравнений с двумя неизвестными:

  1. 26 = -3k + b
  2. -22 = 5k + b

Мы можем решить эту систему уравнений, например, методом подстановки. Выразим b из первого уравнения:

b = 26 + 3k

Теперь подставим это выражение во второе уравнение:

-22 = 5k + (26 + 3k)

Упростим уравнение:

-22 = 8k + 26

Теперь выразим k:

8k = -22 - 26 8k = -48

k = -48 / 8 k = -6

Теперь, когда мы нашли значение k, можем найти значение b, используя любое из первых двух уравнений. Давайте используем первое:

26 = -3(-6) + b 26 = 18 + b

Выразим b:

b = 26 - 18 b = 8

Теперь у нас есть значения k и b:

k = -6 b = 8

Итак, уравнение прямой, проходящей через точки A(-3, 26) и B(5, -22), это:

y = -6x + 8

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос