
8(2x+y)-2y=-76 4(x-3y)+10y=-12


Ответы на вопрос

00000000000000000000000000000




To solve this system of linear equations, you can use the method of substitution or elimination. I'll use the elimination method here.
The system of equations is:
- 8(2x + y) - 2y = -76
- 4(x - 3y) + 10y = -12
Let's start by simplifying the equations:
- 16x + 8y - 2y = -76
- 4x - 12y + 10y = -12
Now, further simplify:
- 16x + 6y = -76
- 4x - 2y = -12
Now, we can use either the elimination method or the substitution method. I'll use the elimination method.
Multiply the second equation by 4 to make the coefficients of 'x' in both equations equal:
- 16x + 6y = -76
- 16x - 8y = -48
Now, subtract equation (2) from equation (1):
(16x + 6y) - (16x - 8y) = (-76) - (-48)
This simplifies to:
16x + 6y - 16x + 8y = -76 + 48
Combine like terms:
14y = -28
Now, divide both sides by 14 to solve for 'y':
y = -28 / 14 y = -2
Now that you have found the value of 'y,' you can substitute it back into one of the original equations to solve for 'x.' I'll use equation (1):
16x + 6(-2) = -76
Simplify:
16x - 12 = -76
Add 12 to both sides:
16x = -76 + 12 16x = -64
Now, divide both sides by 16 to solve for 'x':
x = -64 / 16 x = -4
So, the solution to the system of equations is:
x = -4 y = -2


Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili