Вопрос задан 21.06.2023 в 19:01. Предмет Алгебра. Спрашивает Правосуд Богдан.

|x^2-4x+3|+2<2|x-1|+|x+3|​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Аракелян Валерия.

Ответ:

Объяснение:

!!!!!!!!!!!!!!!!.!!!!!!!!!!!




0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve the inequality |x^2-4x+3| + 2 < 2|x-1| + |x+3|, we need to consider different cases. Let's analyze them one by one.

First, consider x ≤ 1. In this case, the absolute values in the inequality change as follows:

  • |x^2-4x+3| becomes |x^2-4x+3| = x^2 - 4x + 3 (since x^2-4x+3 is already non-negative for x ≤ 1).
  • |x-1| becomes |x-1| = 1 - x.
  • |x+3| becomes |x+3| = -(x + 3) (since x + 3 is non-positive for x ≤ 1).

So the inequality becomes:

x^2 - 4x + 3 + 2 < 2(1 - x) - (x + 3)

Simplify this to get:

x^2 - 4x + 5 < 2 - 2x - x - 3

Simplify further:

x^2 - 4x + 5 < -3x - 1

Rearrange to get a quadratic inequality:

x^2 + x - 4x + 5 + 3x + 1 < 0

x^2 - 2x + 6 < 0

The discriminant of this quadratic is (-2)^2 - 416 = 4 - 24 = -20, which is negative, indicating that the quadratic is always positive. Therefore, this case does not provide any solution.

Next, consider 1 < x < 3. In this case, the absolute values change as follows:

  • |x^2-4x+3| becomes |x^2-4x+3| = x^2 - 4x + 3 (since x^2-4x+3 is already non-negative for 1 < x < 3).
  • |x-1| becomes |x-1| = x - 1.
  • |x+3| becomes |x+3| = x + 3.

So the inequality becomes:

x^2 - 4x + 3 + 2 < 2(x - 1) + (x + 3)

Simplify this to get:

x^2 - 4x + 5 < 2x - 2 + x + 3

Simplify further:

x^2 - 4x + 5 < 3x + 1

Rearrange to get a quadratic inequality:

x^2 - 7x + 4 < 0

Factor this to get:

(x - 4)(x - 1) < 0

This inequality is satisfied when 1 < x < 4.

Lastly, consider x ≥ 3. In this case, the absolute values change as follows:

  • |x^2-4x+3| becomes |x^2-4x+3| = x^2 - 4x + 3 (since x^2-4x+3 is already non-negative for x ≥ 3).
  • |x-1| becomes |x-1| = x - 1.
  • |x+3| becomes |x+3| = x + 3.

So the inequality becomes:

x^2 - 4x + 3 + 2 < 2(x - 1) + (x + 3)

Simplify this to get:

x^2 - 4x + 5 < 2x - 2 + x + 3

Simplify further:

x^2 - 4x + 5 < 3x + 1

Rearrange to get a quadratic inequality:

x^2 - 7x + 4 < 0

Factor this to get:

(x - 4)(x - 1) < 0

This inequality is satisfied when 1 < x < 4.

Therefore, the solution to the inequality |x^2-4x+3| + 2 < 2|x-1| + |x+3| is 1 < x < 4.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Последние заданные вопросы в категории Алгебра

Задать вопрос