
|x^2-4x+3|+2<2|x-1|+|x+3|


Ответы на вопрос

Ответ:
Объяснение:
!!!!!!!!!!!!!!!!.!!!!!!!!!!!






To solve the inequality |x^2-4x+3| + 2 < 2|x-1| + |x+3|, we need to consider different cases. Let's analyze them one by one.
First, consider x ≤ 1. In this case, the absolute values in the inequality change as follows:
- |x^2-4x+3| becomes |x^2-4x+3| = x^2 - 4x + 3 (since x^2-4x+3 is already non-negative for x ≤ 1).
- |x-1| becomes |x-1| = 1 - x.
- |x+3| becomes |x+3| = -(x + 3) (since x + 3 is non-positive for x ≤ 1).
So the inequality becomes:
x^2 - 4x + 3 + 2 < 2(1 - x) - (x + 3)
Simplify this to get:
x^2 - 4x + 5 < 2 - 2x - x - 3
Simplify further:
x^2 - 4x + 5 < -3x - 1
Rearrange to get a quadratic inequality:
x^2 + x - 4x + 5 + 3x + 1 < 0
x^2 - 2x + 6 < 0
The discriminant of this quadratic is (-2)^2 - 416 = 4 - 24 = -20, which is negative, indicating that the quadratic is always positive. Therefore, this case does not provide any solution.
Next, consider 1 < x < 3. In this case, the absolute values change as follows:
- |x^2-4x+3| becomes |x^2-4x+3| = x^2 - 4x + 3 (since x^2-4x+3 is already non-negative for 1 < x < 3).
- |x-1| becomes |x-1| = x - 1.
- |x+3| becomes |x+3| = x + 3.
So the inequality becomes:
x^2 - 4x + 3 + 2 < 2(x - 1) + (x + 3)
Simplify this to get:
x^2 - 4x + 5 < 2x - 2 + x + 3
Simplify further:
x^2 - 4x + 5 < 3x + 1
Rearrange to get a quadratic inequality:
x^2 - 7x + 4 < 0
Factor this to get:
(x - 4)(x - 1) < 0
This inequality is satisfied when 1 < x < 4.
Lastly, consider x ≥ 3. In this case, the absolute values change as follows:
- |x^2-4x+3| becomes |x^2-4x+3| = x^2 - 4x + 3 (since x^2-4x+3 is already non-negative for x ≥ 3).
- |x-1| becomes |x-1| = x - 1.
- |x+3| becomes |x+3| = x + 3.
So the inequality becomes:
x^2 - 4x + 3 + 2 < 2(x - 1) + (x + 3)
Simplify this to get:
x^2 - 4x + 5 < 2x - 2 + x + 3
Simplify further:
x^2 - 4x + 5 < 3x + 1
Rearrange to get a quadratic inequality:
x^2 - 7x + 4 < 0
Factor this to get:
(x - 4)(x - 1) < 0
This inequality is satisfied when 1 < x < 4.
Therefore, the solution to the inequality |x^2-4x+3| + 2 < 2|x-1| + |x+3| is 1 < x < 4.


Похожие вопросы

Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili