Вопрос задан 21.06.2023 в 18:10. Предмет Алгебра. Спрашивает Романовская Надежда.

Выполните действия: a^2b^2(a^-2-b^-2)

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Исмагилов Фанис.

Ответ:

 {a}^{2}  {b}^{2} ( {a}^{ - 2}  -  {b}^{ - 2} ) = {a}^{2}  {b}^{2}( \frac{1}{ {a}^{2}  }  -  \frac{1}{ {b}^{2} } ) =   \frac{ {a}^{2} {b}^{2} ( {b}^{2}  -  {a}^{2} ) }{ {a}^{2} {b}^{2}  }  = (b - a)(b + a)

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для выполнения этой операции, начнем с раскрытия скобок:

a^2b^2(a^-2 - b^-2)

Сначала упростим выражение внутри скобок, используя правило для разности квадратов:

a^-2 - b^-2 = (1/a^2) - (1/b^2)

Теперь выражение выглядит так:

a^2b^2((1/a^2) - (1/b^2))

Следующим шагом упростим выражение, учитывая, что a^2/a^2 = 1 и b^2/b^2 = 1:

a^2b^2(1/a^2 - 1/b^2)

Теперь можно объединить дроби в одну, имея общий знаменатель (a^2b^2):

a^2b^2((b^2 - a^2)/(a^2b^2))

Далее можно сократить a^2b^2 в числителе и знаменателе:

(b^2 - a^2)

Таким образом, выражение a^2b^2(a^-2 - b^-2) упрощается до:

(b^2 - a^2)

0 0

Похожие вопросы

Топ вопросов за вчера в категории Алгебра

Алгебра 1 Данилина Елизавета

Последние заданные вопросы в категории Алгебра

Задать вопрос