
Катер прошел 36 км по течению и 8 км против течения, затратив на весь путь 2 часа. Найдите скорость
по течению реки, если собственная скорость катера 20 км/ч, а скорость течения не превосходит 5 км/ч.

Ответы на вопрос

Ответ:
Примем за Х собственную скорость катера в км/ч, тогда его скорость по течению (х+2) км/ч
Так как катер прошёл по течению 36 км, то затратил времени 36/(х+2) часа
16 км по озеру катер прошёл за 16/х часов
Так как общее время равно 3 часа, то получаем уравнение:
36/(х+2)+16/х=3
36х+16(х+2)=3х(х+2)
36х+16х+32-3х^2-6х=0
-3х^2+46х+32=0
3х^2-46х-32=0
D=2116+12*32=50^2
X1=(46-50)/6=-2/3 не подходит
Х2=(46+50)/6=16 км/ч
Объяснение:



Problem Analysis
We are given that a boat traveled 36 km downstream and 8 km upstream, taking a total of 2 hours for the entire journey. We need to find the speed of the river's current, given that the boat's own speed is 20 km/h and the speed of the current does not exceed 5 km/h.Solution
Let's assume the speed of the river's current is x km/h.When the boat is traveling downstream, its effective speed is the sum of its own speed and the speed of the current. Therefore, the boat's speed downstream is (20 + x) km/h.
When the boat is traveling upstream, its effective speed is the difference between its own speed and the speed of the current. Therefore, the boat's speed upstream is (20 - x) km/h.
We can use the formula distance = speed × time to calculate the time taken for each leg of the journey.
The time taken to travel downstream is given by the equation: 36 = (20 + x) × t1 ----(1)
The time taken to travel upstream is given by the equation: 8 = (20 - x) × t2 ----(2)
We are also given that the total time for the journey is 2 hours: t1 + t2 = 2 ----(3)
We can solve this system of equations to find the value of x.
Solution Steps
1. Rearrange equation (1) to solve for t1: t1 = 36 / (20 + x)2. Rearrange equation (2) to solve for t2: t2 = 8 / (20 - x)
3. Substitute the values of t1 and t2 into equation (3): 36 / (20 + x) + 8 / (20 - x) = 2
4. Solve the equation for x.
Let's solve the equation to find the value of x.
Calculation
Substituting the values of t1 and t2 into equation (3), we get: 36 / (20 + x) + 8 / (20 - x) = 2Multiplying through by the least common denominator, we get: 36(20 - x) + 8(20 + x) = 2(20 + x)(20 - x)
Simplifying the equation, we get: 720 - 36x + 160 + 8x = 2(400 - x^2)
Combining like terms, we get: 880 - 28x = 800 - 2x^2
Rearranging the equation, we get: 2x^2 - 28x + 80 = 0
Factoring the quadratic equation, we get: (2x - 4)(x - 20) = 0
Setting each factor equal to zero, we get: 2x - 4 = 0 or x - 20 = 0
Solving for x, we get: x = 2 or x = 20
Since the speed of the current cannot exceed 5 km/h, the valid solution is x = 2 km/h.
Answer
The speed of the river's current is 2 km/h.

Похожие вопросы
Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili