
4(1+cosx)=3 sin^2x/2cosx/2


Ответы на вопрос

cos²x/2=1+cosx/2 |*2
2cos²x/2=1+cosx
4(2cos²x/2)=3sin²x/2*cosx/2
8cos²x/2-3sin²x/2*cosx/2=0
cosx/2(8cosx/2-3sin²x/2)=0
cosx/2=0
x/2=п/2+пn,n€z
x=п+2пn,n€z
8cosx/2-3sin²x/2=0
8cosx/2-3(1-cos²x/2)=0
3cos²x/2+8cosx/2-3=0
cosx/2=t
3t²+8t-3=0
D=64-4*3*(-3)=100
t1=-8+10/6=1/3
t2=-8-10/6=-18/6=-3
cosx/2=1/3
x/2=+-arccos1/3+2пn,n€z
x=+-2arccos1/3+4пn,n€z
cosx/2=-3
нет решения .
Ответ: x=п+2пn,n€z; x=+-2arccos1/3+4пn,n€z



First, we can simplify the right-hand side of the equation using the trigonometric identity:
sin^2x = (1 - cos2x)/2
cosx/2 = sqrt((1+cosx)/2)
Substituting these identities into the right-hand side of the equation, we get:
3 sin^2x/2cosx/2 = 3(1 - cos2x)/(2sqrt(1+cosx))
Next, we can simplify the left-hand side of the equation:
4(1+cosx) = 4cos^2(x/2)
Substituting this identity into the left-hand side of the equation, we get:
4cos^2(x/2) = 3(1 - cos2x)/(2sqrt(1+cosx))
Multiplying both sides by 2sqrt(1+cosx), we get:
8cos^2(x/2)sqrt(1+cosx) = 3(1 - cos2x)
Using the trigonometric identity:
cos2x = 2cos^2x - 1
We can simplify the right-hand side of the equation:
3(1 - cos2x) = 6cos^2x - 3
Substituting this identity into the equation, we get:
8cos^2(x/2)sqrt(1+cosx) = 6cos^2x - 3
Dividing both sides by 2cos^2(x/2), we get:
4sqrt(1+cosx) = 3sec^2(x/2)
Squaring both sides of the equation, we get:
16(1+cosx) = 9sec^4(x/2)
Using the trigonometric identity:
sec^2(x/2) = (1+cosx)/2
We can simplify the right-hand side of the equation:
9sec^4(x/2) = 9(1+cosx)^2/4
Substituting this identity into the equation, we get:
16(1+cosx) = 9(1+cosx)^2/4
Multiplying both sides by 4, we get:
64(1+cosx) = 9(1+cosx)^2
Expanding the square on the right-hand side of the equation, we get:
64(1+cosx) = 9(1+2cosx+cos^2x)
Simplifying the right-hand side of the equation, we get:
64(1+cosx) = 9 + 18cosx + 9cos^2x
Subtracting 64(1+cosx) from both sides of the equation, we get:
0 = 9cos^2x + 18cosx - 55
Using the quadratic formula, we can solve for cosx:
cosx = (-18 ± sqrt(18^2 - 4(9)(-55)))/(2(9))
cosx = (-18 ± sqrt(1080))/18
cosx = (-18 ± 6sqrt(30))/18
cosx = (-3 ± sqrt(30))/3
Now we can substitute these values of cosx back into the original equation to check if they satisfy the equation.


Топ вопросов за вчера в категории Алгебра
Последние заданные вопросы в категории Алгебра
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili