У каларыметр, які змяшчае лёд масай т 0,10 кг, тэмпература якога t = 0,0 °С, улілі ваду масай ту =
0,50 кг, узятую пры Тэмпературы t = 70 °С. Вызначце канчатковую тэмпературу вады ў каларыметры. Цеплаёмістасць каларыметра не прымаць да ўвагі. можно с решениемОтветы на вопрос
Ответ t3 = 113000/2520 = 44,84 º С.
Объяснение
Q1 + Q2 = Q3.
Q1 + Q2 = Q3. Q1 (плавлення льоду); Q1 = λ * m1, де λ = 3,4 * 105 Дж / кг, m1 = 0,1 кг.
Q1 + Q2 = Q3. Q1 (плавлення льоду); Q1 = λ * m1, де λ = 3,4 * 105 Дж / кг, m1 = 0,1 кг. Q2 (нагрів холодної води); Q2 = С * m1 * (t3 - t1), де С - 4200 Дж / (К * кг), t3 - температура рівноваги, t1 = 0 ° С.
Q1 + Q2 = Q3. Q1 (плавлення льоду); Q1 = λ * m1, де λ = 3,4 * 105 Дж / кг, m1 = 0,1 кг. Q2 (нагрів холодної води); Q2 = С * m1 * (t3 - t1), де С - 4200 Дж / (К * кг), t3 - температура рівноваги, t1 = 0 ° С. Q3 (охолодження гарячої води); Q3 = С * m2 * (t2 - t3), де m2 = 0,5 кг, t2 = 70 ° С.
Q1 + Q2 = Q3. Q1 (плавлення льоду); Q1 = λ * m1, де λ = 3,4 * 105 Дж / кг, m1 = 0,1 кг. Q2 (нагрів холодної води); Q2 = С * m1 * (t3 - t1), де С - 4200 Дж / (К * кг), t3 - температура рівноваги, t1 = 0 ° С. Q3 (охолодження гарячої води); Q3 = С * m2 * (t2 - t3), де m2 = 0,5 кг, t2 = 70 ° С. Виконаємо розрахунки:
Q1 + Q2 = Q3. Q1 (плавлення льоду); Q1 = λ * m1, де λ = 3,4 * 105 Дж / кг, m1 = 0,1 кг. Q2 (нагрів холодної води); Q2 = С * m1 * (t3 - t1), де С - 4200 Дж / (К * кг), t3 - температура рівноваги, t1 = 0 ° С. Q3 (охолодження гарячої води); Q3 = С * m2 * (t2 - t3), де m2 = 0,5 кг, t2 = 70 ° С. Виконаємо розрахунки: λ * m1 + С * m1 * (t3 - t1) = С * m2 * (t2 - t3).
Q1 + Q2 = Q3. Q1 (плавлення льоду); Q1 = λ * m1, де λ = 3,4 * 105 Дж / кг, m1 = 0,1 кг. Q2 (нагрів холодної води); Q2 = С * m1 * (t3 - t1), де С - 4200 Дж / (К * кг), t3 - температура рівноваги, t1 = 0 ° С. Q3 (охолодження гарячої води); Q3 = С * m2 * (t2 - t3), де m2 = 0,5 кг, t2 = 70 ° С. Виконаємо розрахунки: λ * m1 + С * m1 * (t3 - t1) = С * m2 * (t2 - t3). 3,4 * 105 * 0,1 + 4200 * 0,1 * t3 = 4200 * 0,5 * (70 - t3).
Q1 + Q2 = Q3. Q1 (плавлення льоду); Q1 = λ * m1, де λ = 3,4 * 105 Дж / кг, m1 = 0,1 кг. Q2 (нагрів холодної води); Q2 = С * m1 * (t3 - t1), де С - 4200 Дж / (К * кг), t3 - температура рівноваги, t1 = 0 ° С. Q3 (охолодження гарячої води); Q3 = С * m2 * (t2 - t3), де m2 = 0,5 кг, t2 = 70 ° С. Виконаємо розрахунки: λ * m1 + С * m1 * (t3 - t1) = С * m2 * (t2 - t3). 3,4 * 105 * 0,1 + 4200 * 0,1 * t3 = 4200 * 0,5 * (70 - t3). 34000 + 420t3 = 147000 - 2100t3.
Q1 + Q2 = Q3. Q1 (плавлення льоду); Q1 = λ * m1, де λ = 3,4 * 105 Дж / кг, m1 = 0,1 кг. Q2 (нагрів холодної води); Q2 = С * m1 * (t3 - t1), де С - 4200 Дж / (К * кг), t3 - температура рівноваги, t1 = 0 ° С. Q3 (охолодження гарячої води); Q3 = С * m2 * (t2 - t3), де m2 = 0,5 кг, t2 = 70 ° С. Виконаємо розрахунки: λ * m1 + С * m1 * (t3 - t1) = С * m2 * (t2 - t3). 3,4 * 105 * 0,1 + 4200 * 0,1 * t3 = 4200 * 0,5 * (70 - t3). 34000 + 420t3 = 147000 - 2100t3. 2520t3 = 113000.
Q1 + Q2 = Q3. Q1 (плавлення льоду); Q1 = λ * m1, де λ = 3,4 * 105 Дж / кг, m1 = 0,1 кг. Q2 (нагрів холодної води); Q2 = С * m1 * (t3 - t1), де С - 4200 Дж / (К * кг), t3 - температура рівноваги, t1 = 0 ° С. Q3 (охолодження гарячої води); Q3 = С * m2 * (t2 - t3), де m2 = 0,5 кг, t2 = 70 ° С. Виконаємо розрахунки: λ * m1 + С * m1 * (t3 - t1) = С * m2 * (t2 - t3). 3,4 * 105 * 0,1 + 4200 * 0,1 * t3 = 4200 * 0,5 * (70 - t3). 34000 + 420t3 = 147000 - 2100t3. 2520t3 = 113000. t3 = 113000/2520 = 44,84 º С.
Для решения задачи о тепловом равновесии в калориметре можно воспользоваться уравнением теплового баланса:
\[Q_{\text{п}} + Q_{\text{л}} = 0,\]
где \(Q_{\text{п}}\) - тепло, переданное воде, а \(Q_{\text{л}}\) - тепло, переданное льду.
Тепло, переданное воде, можно выразить как:
\[Q_{\text{п}} = mc\Delta t,\]
где: - \(m\) - масса воды, - \(c\) - удельная теплоемкость воды, - \(\Delta t\) - изменение температуры воды.
Тепло, переданное льду, можно выразить как:
\[Q_{\text{л}} = mL,\]
где: - \(L\) - удельная теплота плавления льда.
Теперь, учитывая, что в начальный момент времени температура воды \(t_1 = 70^\circ\text{C}\), а температура льда \(t_2 = 0^\circ\text{C}\), и что в конечный момент времени температура воды и льда одинакова и равна \(t_3\), мы можем записать уравнение теплового баланса:
\[m_1c(t_1 - t_3) + m_2L = 0.\]
Где \(m_1\) - масса воды, \(m_2\) - масса льда.
Теперь подставим данные задачи:
\[0.50 \cdot c(70 - t_3) + 0.10 \cdot L = 0.\]
Учитывая, что удельная теплоемкость воды \(c = 4.186 \, \text{кДж/кг}^\circ\text{C}\) и удельная теплота плавления льда \(L = 334 \, \text{кДж/кг}\), подставим значения:
\[0.50 \cdot 4.186 \cdot (70 - t_3) + 0.10 \cdot 334 = 0.\]
Теперь решим уравнение относительно \(t_3\):
\[2.093 \cdot (70 - t_3) + 33.4 = 0.\]
Раскроем скобки:
\[146.51 - 2.093t_3 + 33.4 = 0.\]
Переносим числа на одну сторону:
\[-2.093t_3 = -179.91.\]
Решаем уравнение:
\[t_3 = \frac{-179.91}{-2.093} \approx 86 \, ^\circ\text{C}.\]
Таким образом, конечная температура воды в калориметре составит примерно \(86 \, ^\circ\text{C}\).
Похожие вопросы
Топ вопросов за вчера в категории Физика
Последние заданные вопросы в категории Физика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
