(1+tg^2a)*(1+cos^2a)
Ответы на вопрос
To simplify the expression (1 + tan^2(a))(1 + cos^2(a)), you can use trigonometric identities. Here's the step-by-step simplification:
Start with the given expression: (1 + tan^2(a))(1 + cos^2(a))
Use the identity tan^2(a) = sec^2(a) - 1: (1 + (sec^2(a) - 1))(1 + cos^2(a))
Distribute the terms in the first set of parentheses: ((1 - 1) + sec^2(a))(1 + cos^2(a))
Simplify the terms in the first set of parentheses: (0 + sec^2(a))(1 + cos^2(a))
Anything multiplied by 0 is 0, so the first part of the expression becomes 0: 0(1 + cos^2(a))
Anything multiplied by 0 is 0, so the entire expression simplifies to 0: 0
So, the simplified expression is 0.
To simplify the expression (1 + tan^2(a))(1 + cos^2(a)), you can use trigonometric identities to make the calculation easier. Here's the step-by-step simplification:
- Start with the given expression:
(1 + tan^2(a))(1 + cos^2(a))
- Use the trigonometric identity for tangent:
tan^2(a) = sec^2(a) - 1
- Substitute the identity into the expression:
(1 + (sec^2(a) - 1))(1 + cos^2(a))
- Simplify further:
(1 - 1 + sec^2(a))(1 + cos^2(a))
Now, you have:
(sec^2(a))(1 + cos^2(a))
- Use another trigonometric identity:
sec^2(a) = 1 + tan^2(a)
- Substitute the identity into the expression:
(1 + tan^2(a))(1 + cos^2(a))
And you're back to the original expression:
(1 + tan^2(a))(1 + cos^2(a))
So, the simplified expression is the same as the original one.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
