
2cos2x+2sin^x-sin2x = 0


Ответы на вопрос

Смотри.....................




It seems like you have a trigonometric equation you'd like to solve:
2cos(2x) + 2sin(x) - sin(2x) = 0
To solve this equation, we can use some trigonometric identities to simplify it. First, let's use the double angle formulas for sine and cosine:
cos(2x) = 2cos^2(x) - 1 sin(2x) = 2sin(x)cos(x)
Now, substitute these identities back into the equation:
2(2cos^2(x) - 1) + 2sin(x) - 2sin(x)cos(x) = 0
Now, simplify further:
4cos^2(x) - 2 + 2sin(x) - 2sin(x)cos(x) = 0
Next, factor out common terms:
2(2cos^2(x) - sin(x) + sin(x)cos(x) - 1) = 0
Now, we can try to solve for cos(x):
2cos^2(x) - sin(x) + sin(x)cos(x) - 1 = 0
Divide the equation by 2 to simplify:
cos^2(x) - (1/2)sin(x) + (1/2)sin(x)cos(x) - (1/2) = 0
Now, let's focus on the term involving cos(x):
cos^2(x) + (1/2)sin(x)cos(x) = (1/2)sin(x) - (1/2)
Use the identity sin(2x) = 2sin(x)cos(x):
cos^2(x) + (1/2)sin(2x) = (1/2)sin(x) - (1/2)
Now, we can use the identity cos^2(x) = 1 - sin^2(x):
1 - sin^2(x) + (1/2)sin(2x) = (1/2)sin(x) - (1/2)
Rearrange the terms:
1 - sin^2(x) - (1/2)sin(x) + (1/2)sin(2x) - (1/2) = 0
Now, we have a quadratic equation in sin(x). Let's multiply everything by 2 to get rid of fractions:
2 - 2sin^2(x) - sin(x) + sin(2x) - 1 = 0
Combine like terms:
-2sin^2(x) - sin(x) + sin(2x) + 1 = 0
Now, this is a quadratic equation in sin(x). You can solve it using the quadratic formula:
sin(x) = [-b ± sqrt(b^2 - 4ac)] / (2a)
In this case, a = -2, b = -1, and c = 1. Plug these values into the formula to find sin(x):
sin(x) = [1 ± sqrt((-1)^2 - 4(-2)(1))] / (2(-2))
sin(x) = [1 ± sqrt(1 + 8)] / (-4)
sin(x) = [1 ± sqrt(9)] / (-4)
sin(x) = [1 ± 3] / (-4)
Now, you have two possible solutions for sin(x):
- sin(x) = (1 + 3) / (-4) = 1/2
- sin(x) = (1 - 3) / (-4) = -1
Now, you can find the corresponding values of x by taking the arcsin (inverse sine) of these values:
- For sin(x) = 1/2: x = arcsin(1/2) = π/6 (or 30 degrees)
- For sin(x) = -1: x = arcsin(-1) = -π/2 (or -90 degrees)
So, the solutions to the equation 2cos(2x) + 2sin(x) - sin(2x) = 0 are:
x = π/6 + 2nπ (where n is an integer) x = -π/2 + 2nπ (where n is an integer)
These are the general solutions to the equation.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili