Вопрос задан 01.10.2023 в 14:25. Предмет Математика. Спрашивает Бероева Лиза.

32. Два числа являются корнем какого-то уравнения, и их произведения и сумма соответственно

равняется -27 и 6. Найдите этиЧИСла.С(-3; 9) и (9;-3)нет ответа-3 и 9​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кузнецов Роман.

Ответ:

(9:-3) (-3:9)

Пошаговое объяснение:

a*b=-27

a+b=6 тогда a=6-b

(6-b)*b=-27

-b²+6b+27=0

b²-6b-27=0

D=(-6)²-4*(-27)=36+108=144=12²

b=(6±12)/2

b1=(6+12)/2=18/2=9

b2=(6-12)/2=-6/2=-3

>

a1=6-9=-3

a2=6-(-3)=9

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим два числа как x и y. У нас есть два уравнения на основе данных:

  1. Произведение чисел равно -27: x * y = -27

  2. Сумма чисел равна 6: x + y = 6

Мы можем решить эту систему уравнений методом подстановки или методом сложения/вычитания. Давайте воспользуемся методом сложения:

Добавим оба уравнения:

(x * y) + (x + y) = (-27) + 6

x*y + x + y = -21

Мы заметим, что левая сторона этого уравнения может быть факторизована:

x*y + x + y = (x + 1)(y + 1)

Теперь у нас есть:

(x + 1)(y + 1) = -21

Теперь мы ищем два числа, которые имеют произведение -21 и разницу 1. Эти числа -3 и 7, так как (-3) * 7 = -21 и (-3) + 7 = 4.

Теперь мы можем найти исходные числа, вычитая 1 из каждого из них:

x + 1 = -3 y + 1 = 7

x = -3 - 1 = -4 y = 7 - 1 = 6

Таким образом, два числа, которые являются корнями данного уравнения и соответствуют условиям задачи, равны -4 и 6.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос