Вопрос задан 29.07.2023 в 19:32.
Предмет Математика.
Спрашивает Бучко Денис.
Найти уравнение касательной в точке М( 1; 1/2) функции 0,5x^2 +4x
Ответы на вопрос
Отвечает Шевченко Дарья.
Найти уравнение касательной в точке М( 1; 1/2) функции 0,5x² + 4x
Решение
Проверим не является ли точка М(1;1/2) точкой касания.Если точка М(1;1/2) является точкой касания, и её координаты должны удовлетворять уравнению функции.
Подставим координаты точки М(1;1/2) в уравнение функции у = 0,5x² + 4x.
0,5 = 0,5·1² + 4·1
0,5 ≠ 4,5
значит точка M(1;1/2) не является точкой касания.
Уравнение касательной выглядит
y = f(x₀)+f'(x₀)(x-x₀)
Значение функции в точке х₀ равно
f(x₀)= 0,5x₀² + 4x₀
Найдём производную в точке x₀
f'(x) = (0,5x² + 4x)' = x + 4
f'(x₀) = x₀ + 4
Подставим найденные выражения в формулу касательной
0,5 = 0,5x₀² + 4x₀ + (x₀ + 4)(1 - x₀)
Решим это уравнение
0,5x₀² + 4x₀ - x₀² - 3x₀ + 4 - 0,5 = 0
0,5x₀²+ x₀ + 3,5 = 0 x₀²- 2x₀ - 7 = 0
D = 2² - 4*(-7) = 4 + 28 = 32
Первый корень уравнения
x₀ = (2 - 4√2)/2 = 1 - 2√2
f(x₀) = 0,5(1-2√2)² + 4(1-2√2) = 0,5(1-4√2+8) + 4 - 8√2 =
= 4,5 - 2√2 + 4 - 8√2 = 8,5 - 10√2
f'(x₀) = 1 - 2√2 + 4 = 5 - 2√2
Уравнение касательной в точке x₀ = 1 - 2√2 f(x₀) = 8,5 - 10√2
y = 8,5 - 10√2 + (5 - 2√2)(x - 1 + 2√2) =
= 8,5 - 10√2 - 5 + 10√2 + 2√2 - 8 + (5-2√2)х = (5-2√2)х + 2√2 - 4,5
Второй корень уравнения
x₀=(2+4√2)/2 = 1 + 2√2
f(x₀) = 0,5(1 + 2√2)² + 4(1 + 2√2) = 0,5(1 + 4√2 + 8) + 4 + 8√2 =
= 4,5 + 2√2 + 4 + 8√2 = 8,5 + 10√2
f'(x₀) = 1 + 2√2 + 4 = 5 + 2√2
Напишем уравнение касательной в точке x₀ = 1 + 2√2 f(x₀) = 8,5 + 10√2
y = 8,5 + 10√2 + (5 + 2√2)(x - 1 - 2√2) =
= 8,5 + 10√2 - 5 - 10√2 - 2√2 - 8 + (5 + 2√2)х = (5 + 2√2)х - 4,5 - 2√2
Получили два уравнения касательных удовлетворяющих условиям задачи
Ответ: y = (5 - 2√2)х + 2√2 - 4,5; y = (5 + 2√2)х - 4,5 - 2√2
Решение
Проверим не является ли точка М(1;1/2) точкой касания.Если точка М(1;1/2) является точкой касания, и её координаты должны удовлетворять уравнению функции.
Подставим координаты точки М(1;1/2) в уравнение функции у = 0,5x² + 4x.
0,5 = 0,5·1² + 4·1
0,5 ≠ 4,5
значит точка M(1;1/2) не является точкой касания.
Уравнение касательной выглядит
y = f(x₀)+f'(x₀)(x-x₀)
Значение функции в точке х₀ равно
f(x₀)= 0,5x₀² + 4x₀
Найдём производную в точке x₀
f'(x) = (0,5x² + 4x)' = x + 4
f'(x₀) = x₀ + 4
Подставим найденные выражения в формулу касательной
0,5 = 0,5x₀² + 4x₀ + (x₀ + 4)(1 - x₀)
Решим это уравнение
0,5x₀² + 4x₀ - x₀² - 3x₀ + 4 - 0,5 = 0
0,5x₀²+ x₀ + 3,5 = 0 x₀²- 2x₀ - 7 = 0
D = 2² - 4*(-7) = 4 + 28 = 32
Первый корень уравнения
x₀ = (2 - 4√2)/2 = 1 - 2√2
f(x₀) = 0,5(1-2√2)² + 4(1-2√2) = 0,5(1-4√2+8) + 4 - 8√2 =
= 4,5 - 2√2 + 4 - 8√2 = 8,5 - 10√2
f'(x₀) = 1 - 2√2 + 4 = 5 - 2√2
Уравнение касательной в точке x₀ = 1 - 2√2 f(x₀) = 8,5 - 10√2
y = 8,5 - 10√2 + (5 - 2√2)(x - 1 + 2√2) =
= 8,5 - 10√2 - 5 + 10√2 + 2√2 - 8 + (5-2√2)х = (5-2√2)х + 2√2 - 4,5
Второй корень уравнения
x₀=(2+4√2)/2 = 1 + 2√2
f(x₀) = 0,5(1 + 2√2)² + 4(1 + 2√2) = 0,5(1 + 4√2 + 8) + 4 + 8√2 =
= 4,5 + 2√2 + 4 + 8√2 = 8,5 + 10√2
f'(x₀) = 1 + 2√2 + 4 = 5 + 2√2
Напишем уравнение касательной в точке x₀ = 1 + 2√2 f(x₀) = 8,5 + 10√2
y = 8,5 + 10√2 + (5 + 2√2)(x - 1 - 2√2) =
= 8,5 + 10√2 - 5 - 10√2 - 2√2 - 8 + (5 + 2√2)х = (5 + 2√2)х - 4,5 - 2√2
Получили два уравнения касательных удовлетворяющих условиям задачи
Ответ: y = (5 - 2√2)х + 2√2 - 4,5; y = (5 + 2√2)х - 4,5 - 2√2
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Чтобы найти уравнение касательной к функции в заданной точке, мы должны выполнить следующие шаги:
- Найти производную функции.
- Подставить координаты точки М(1; 1/2) в производную, чтобы найти значение производной в этой точке.
- Используя найденное значение производной и координаты точки М(1; 1/2), составить уравнение касательной.
Дано уравнение функции: f(x) = 0.5x^2 + 4x
Найдем производную функции f'(x): f'(x) = d/dx (0.5x^2 + 4x) f'(x) = 1 * 0.5 * 2x^(1-1) + 4 * 1 f'(x) = x + 4
Теперь найдем значение производной в точке М(1; 1/2): f'(1) = 1 + 4 = 5
Теперь составим уравнение касательной в точке М(1; 1/2). Общее уравнение касательной к функции y = f(x) в точке (a; f(a)) имеет вид y = f'(a) * (x - a) + f(a). Подставим значения a = 1, f(a) = f(1) = 0.5 * 1^2 + 4 * 1 = 0.5 + 4 = 4.5 и f'(a) = f'(1) = 5:
y = 5 * (x - 1) + 4.5
Уравнение касательной в точке М(1; 1/2) функции f(x) = 0.5x^2 + 4x:
y = 5 * (x - 1) + 4.5
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
