
НОК 99 и 100НОК 28 и 21НОК 24 и 23


Ответы на вопрос

Ответ:на фото
Пошаговое объяснение:




To find the least common multiple (LCM) of two or more numbers, you can follow these steps:
Step 1: Find the prime factors of each number. Step 2: Identify the highest power of each prime factor that appears in any of the numbers. Step 3: Multiply the identified prime factors together to get the LCM.
Let's find the LCM for the given numbers:
- LCM(99, 100):
Prime factors of 99: 3 * 3 * 11 Prime factors of 100: 2 * 2 * 5 * 5
The highest power of each prime factor:
- 3^2 (appears in 99)
- 2^2 (appears in 100)
- 5^2 (appears in 100)
- 11^1 (appears in 99)
LCM(99, 100) = 3^2 * 2^2 * 5^2 * 11^1 = 39600
- LCM(28, 21):
Prime factors of 28: 2 * 2 * 7 Prime factors of 21: 3 * 7
The highest power of each prime factor:
- 2^2 (appears in 28)
- 3^1 (appears in 21)
- 7^1 (appears in both 28 and 21)
LCM(28, 21) = 2^2 * 3^1 * 7^1 = 84
- LCM(24, 23):
Prime factors of 24: 2 * 2 * 2 * 3 Prime factors of 23: 23
The highest power of each prime factor:
- 2^3 (appears in 24)
- 3^1 (appears in 24)
- 23^1 (appears in 23)
LCM(24, 23) = 2^3 * 3^1 * 23^1 = 1104
So, the LCMs are:
- LCM(99, 100) = 39600
- LCM(28, 21) = 84
- LCM(24, 23) = 1104


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili