Вопрос задан 28.09.2023 в 16:41. Предмет Геометрия. Спрашивает Борозна Настя.

Найдите площадь боковой поверхности правильной четырехугольной пирамиды, диагональ основания

которой равна 8 см, а отрезок, соединяющий вершину пирамиды с центром основания, равен ​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Фесенко Макс.

Ответ:

48см²

Объяснение:

АD=AC/√2=8/√2=4√2 см

ОК=AD/2=4√2/2=2√2 см.

Теорема Пифагора

SK=√(SO²+OK²)=√((√10)²+(2√2)²)=

=√18 см.

Росн=4*AD=4*4√2=16√2см

Sбок=1/2*Росн*SK=1/2*16√2*√18=8*6=

=48см²


0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения площади боковой поверхности правильной четырехугольной пирамиды сначала нужно найти высоту этой пирамиды. Высота пирамиды перпендикулярно основанию и проходит через центр его.

Поскольку у нас нет информации о высоте пирамиды, нам нужно использовать геометрические свойства для вычисления её. Правильная четырехугольная пирамида имеет квадратное основание, поэтому диагональ основания, соединяющая противоположные углы, равна дважды длине одной из его сторон. Таким образом, сторона квадрата основания равна половине длины его диагонали:

Длина стороны квадрата основания = 8 см / 2 = 4 см.

Теперь, чтобы найти высоту пирамиды, можно использовать теорему Пифагора. Диагональ основания (8 см) представляет собой гипотенузу прямоугольного треугольника, а половина длины стороны квадрата основания (4 см) - это одна из его катетов. Другой катет (высота пирамиды) будет:

Высота пирамиды = √(Гипотенуза^2 - Катет^2) Высота пирамиды = √(8 см^2 - 4 см^2) Высота пирамиды = √(64 см^2 - 16 см^2) Высота пирамиды = √48 см^2 Высота пирамиды = 4√3 см.

Теперь у нас есть высота пирамиды, и мы можем найти площадь её боковой поверхности. Площадь боковой поверхности пирамиды равна половине произведения периметра основания на её высоту:

Периметр основания = 4 стороны * Длина стороны = 4 * 4 см = 16 см.

Площадь боковой поверхности = 1/2 * Периметр основания * Высота пирамиды Площадь боковой поверхности = 1/2 * 16 см * 4√3 см Площадь боковой поверхности = 32√3 см².

Итак, площадь боковой поверхности правильной четырехугольной пирамиды равна 32√3 квадратных сантиметра.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Геометрия

Последние заданные вопросы в категории Геометрия

Задать вопрос