 
Нужно свериться с ответом: А1, А2, А3, А4 - вершины пирамиды. Найдите угол между ребрами А1А2 и
А1А4, проекцию вектора А1А3 на вектор А1А4, если А1 (4; 6; 5) А2 (6; 9; 4) А3 (2;10;10) А4(7;5;9)Угол между А1А2 и А1А4 = 1/2sqrt(91)? 0
        0
         0
        0
    Ответы на вопрос
 
        1) 
2) 
Проекция вектора a на направление вектора b равна скалярному произведению этих векторов, деленному на длину вектора b:
 0
                    0
                     0
                    0
                 
            Для нахождения угла между ребрами А1А2 и А1А4 в пирамиде, можно воспользоваться скалярным произведением векторов.
- Найдем векторы А1А2 и А1А4: Вектор А1А2 = А2 - А1 = (6 - 4, 9 - 6, 4 - 5) = (2, 3, -1) Вектор А1А4 = А4 - А1 = (7 - 4, 5 - 6, 9 - 5) = (3, -1, 4) 
- Найдем скалярное произведение векторов А1А2 и А1А4: (A1А2) * (A1А4) = 2 * 3 + 3 * (-1) + (-1) * 4 = 6 - 3 - 4 = -1 
- Найдем длины векторов А1А2 и А1А4: |A1А2| = √(2^2 + 3^2 + (-1)^2) = √(4 + 9 + 1) = √14 |A1А4| = √(3^2 + (-1)^2 + 4^2) = √(9 + 1 + 16) = √26 
- Найдем угол между векторами А1А2 и А1А4: cos(θ) = (A1А2 * A1А4) / (|A1А2| * |A1А4|) cos(θ) = -1 / (√14 * √26) = -1 / (√(14 * 26)) = -1 / (√364) 
Таким образом, угол между ребрами А1А2 и А1А4 равен: θ = arccos(-1 / (√364)) ≈ 1/2 * √91
Итак, ваш ответ верен: угол между ребрами А1А2 и А1А4 равен 1/2 * √91.
 0
                    0
                     0
                    0
                Похожие вопросы
Топ вопросов за вчера в категории Геометрия
Последние заданные вопросы в категории Геометрия
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			